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ABSTRACT. In applications it is common to arrive at a problem where the
choice of an optimal domain is considered. One such problem is the one asso-
ciated with the steady state reaction diffusion equation given by a semilinear
elliptic equation with a monotone nonlinearity g. In some contexts, in partic-
ular in chemical engineering, it is common to consider the functional given by
the integral of this nonlinear term of the solution dived by the measure of the
domain 2 in which the pde takes place. This is often related with the effec-
tiveness of the reaction. In this paper our aim is to study the differentiability
of such functional as study connected to the optimality of the best chemical
reactor.

1. INTRODUCTION AND STATEMENT OF RESULTS

The main goal of this article is to analyze the differentiability, with respect to
the domain €2, of the effectiveness factor

1
£ =g [ Blun)ds
€2 Jo
where wgq is the solution of the problem arising in chemical catalysis [2], 3]

—Aw+ B(w) = f, inQ,

1.1
w=1, on . (1)

The model can be obtained in different ways, including homogenization techniques:
see, e.g. [6] and [5]. By introducing the change in variable u = 1 — w the problem
can be reformulated as
—Au+g(u)=f, inQ,
g(u) = f (1.2)
u=0, on 9.
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where g(u) = B(1) — (1 —u) and f = B(1) — f. In this case instead of the
effectiveness factor we can study n(Q2) =1 — £(Q)

1
=19
=191 J,

where ug is the solution of . In the chemical context this factor represents the
amount of reaction taking place.

This kind of problems fall with the family of problems studied by several authors
in the literature (see, e.g. [I8, [19, 20] and the references therein). In the most
general case this family of problems may be described by:

A(u(D))=f, in D,
B(u(D)) =g, ondD

and the functional can by given generally as

J(D):/]:)C'(uD)alac7

where A, B,C' may contain also some derivatives of up. In this paper we shall
concentrate our attention in problem and we shall provide elementary and
direct proofs of results which could be obtained from the general theory but under
stronger assumptions (see, for instance, the statement taken from [20] which is
reproduced here in Section 2).

As mentioned before, our aim is to study the differentiability of functional .
We consider a fixed domain open bounded regular set of R™, g, and study its
deformations given by a function 6 : R” — R"™, so that the new domain is Q = (Id+
0)Q2y. We consider, as it is the case in chemistry catalysis, g and f such that 0 <
u < 1. We also mention that this kind of differentiation result also appears in many
other contexts. Besides the above mentioned references we recall here the articles
[7] for a linear problem with a Dirichlet constant boundary condition and [17] were
a semilinear equation arising in combustion was considered (corresponding, in our
formulation to take g(u) = —e®).

To obtain this properties in the sense of derivatives, we consider two approaches,
mimicking the approach in differential geometry. We first consider the global dif-
ferentiability of solutions (as it was done in the linear cases in [I5] [I] and the most
general case in [20]), which unfortunately requires derivatives in spaces of too reg-
ular functions, and then we take advantage of the differentiation along curves (the
approach followed in [21]).

Let us call, for simplicity, ug the solution of . This corresponds to the
Lagrangian understanding of the problem in the sense that the functional under
study is study in terms of the direct domain 2. However, we can consider the
Eulerian understanding of the problem by recalling that in this family of domains,
Q= (Id + 8)Q, we can introduce a new function vg : Q¢ — R defined by

Vg = (] + 9)*U(1+9)Q0 = U(140)Q © (I +0), (1.5)

simplifying the study of the differentiability of uq and the functional n() with
respect to ).

Our proof relies heavily on the Implicit Function Theorem. The application of
this theorem requires an uniform choice of functional space, which would require
some additional information on w. This kind of problems in the functional setting
is well portrayed in [4].

(ug)dx, (1.3)

(1.4)
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For the nonlinearity g we shall consider the following assumptions:
Hypothesis 1.1. g is nondecreasing

Hypothesis 1.2. The Nemitskij operator for g (which we will denote again by g in
some circumstances, as a widely accepted abuse of notation) G : H*(Q) — L?()
defined by

Gu)=gou (1.6)
is of class C™ for some m > 1.

We recall that Hypothesis immediately implies that [DG](v)e = ¢'(v)p for
©,v € H(Q) and that if G is of class C* with k& > 1 then necessarily g(s) = as + b
for some a,b € R.

Our first result collects some general results on the differentiability of the solution
uq with respect to :

Theorem 1.3. Let g satisfy Hypothesis and. Then, the map WH>(R", R") —
H(% (QO)}

9'—>Ug

(where vy is defined by (1.5)) is of class C' in a neighbourhood of 0 if f € H*(R™)
where | = min{k,[}. Furthermore, the application u : W1 (R" R") — L?(R"),

0 — ur10(00))

(where wg is extended by zero outside (I + 0)(Qo)) is differentiable at 0. In fact
o WHee(R™, R™) — HY(Q) and

u/'(0)0 + Vug, -0 € HE ().

As in differential geometry, to compute a derivative we can take two routes. The
first one is to show the existence of a global derivative, and this allows to compute
some properties of our functions. The other one, is to compute the derivative along
curves.

Definition 1.4. We say that @ is a curve of deformations if ® : [0,7) — W1>°(Qy)
with det ®(7) > 0.

Hypothesis 1.5. We will say that 6 is a curve of small perturbations of the identity
(with direction V') if ®(7) = I + (1) is a curve of deformations and

(1) 6:10,T) — WHe(R") is differentiable at 0,

(2) 0(0) =0,

(3) 9'(0) =V.

Sometimes we consider higher order derivatives too. We will refer to 6 or ®
indistinctively, since they relate by ®(7) = I +6(7). Thus, the above theorem leads
to:

Corollary 1.6. Let ® be a a curve of deformations of class C*. Then 1 — Vg(r) 8
of class C' with | = min{m, k}.

Our second result concerns the characterization of u’.
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Theorem 1.7. Let g satisfy Hypothesis and [I-9  Let 6 be a curve satisfy-
ing assumptions[1.5. Then u is differentiable along ® at least at 0. That is, the
directional derivative %(u o @) exists, and it is the solution u’ of

—Au + A (ug,)u’ =0 in Qo,

, (1.7)
u' = —=Vug, -V, on 0Q.

We point out that the above result shows, in other terms, that u/(0)6 is the

unique weak solution of
—Au' + A (ug,)u’ =0, in Qo, r
uw = —Vug, -0, on 9. (18)

As consequence we have the following result.

Corollary 1.8. The function u’' : W1 (R"™ R") — H(Q) is continuous. In fact,
since the solution u of (1.2) u € W2P(Q) for any p € [1,+00) then for any q € [1,p),
[u'(0)(0)lq < c| V- O] s (a0
< clfloo| Vg, | Lr (90
< ¢(p)10]oo[uay [w2.r ()

Concerning the differentiability of the effectiveness factor functional we have the
following theorem.

Theorem 1.9. Under the assumptions of Theorem[I.3, let
7(0) :/ g(u(r46y0,)d. (1.9)
(I4+60)2
Then n is of class C™ in a neighbourhood of 0. It holds that

ﬁ(m)(O)(Gl,m ,0) :/ d"

; m(g(ve)Ja) dz. (1.10)

Its first derivative can be expressed in terms of u,
7'(0)(0) = /Q (¢ (ugy )" + div(g(ua,)0)) dz, (1.11)
and if OG is Lipschitz
7' (0)(0) :/ g’ (ug, )’ d:v+g(0)/ 6-ndsS, (1.12)
Qo 8520
where v’ = u'(0)(6).

Corollary 1.10. Under the assumptions of Theorem[1.3 it holds that

n'(0) = ‘Qild(/g g’ (ug,)u' dz —n(0) 0 - ndS).

9Qo
Corollary 1.11. Under the assumptions of Theorem[I.3if ® is a volume preserving
curve then

1

/ !
= — g (ug,)u' dx .
0] Ja, ’

n'(6)
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We point out that if g is Lipschitz (i.e. g € W% (R)) then we obtain

[n(0) —n(0)] = 1 (0)(AO)]| < clg'loolulyw20]0]cc-

This allows to get some generalizations of the last result in cases in which the
absorption term g is not so regular, as for instance when (w) = w? and ¢ € (0, 1).
Nevertheless, if there is a non-empty dead core (in the literature the dead core is
defined as {z € Q : wq(z) = 0} where wg is the solution of (I.I))) some additional
arguments must be developed, in the line of [I4], where some unbounded potentials
are considered. This will the subject of a separated paper by the authors [12].

We end this paper by presenting, in Section 5, some applications of the above
results in terms of the Schwarz and Steiner symmetrization as well as by illustrating
them for some special families of domains by means of some numerical experiences.

2. FUNCTIONAL SETTING: NEMITSKIJ OPERATORS AND THE IMPLICIT FUNCTION
THEOREM

Let us formalize what we mean by a shape functional. At the most fundamental
level it should be a function defined over a set of domain, that is defined over € C
P(R™). Since we want to differentiate we, at the very least, need to define proximity,
that is a way to define neighbourhood of a set. As it is usual in the literature of shape
optimization we work over the set of weakly differentiable bounded deformations
with bounded derivative, the Sobolev space W>°(R" R").

Definition 2.1. We say that J is defined on a neighbourhood of Qg C R if
there exists U a neighbourhood of 0 on W1 (R" R") such that J is defined over
{(Id+ 0)(2) : 0 € U}. We say that J is differentiable at g if the application
Whee (R R") — R,

0— J((Id+0)(£0))
is differentiable at 0.

We present a sufficient condition so that Hypothesis[T.2]holds. This is widely used
in the context of partial differential equations, but as far as we know no reference
is known besides it being an exercise in [16]. That being the case we provide the
usual proof. Other conditions, mainly on the growth of g can be considered so that

assumptions holds.

Lemma 2.2. Let g € W2°°(R). Then the Nemitskij operator (1.6)) in the sense
LP(Q) — L%(Q) is of class C* for all p > 2. In particular, Hypothesis holds.

Proof. Let us define G the Nemitskij operator defined in (1.6). Consider it G :
LP(Q2) — L*(Q) for p > 2. We first have that, for L = max{]|g/cc, [|¢'|lccs /9" lcc }

IG(u) = G(v)|[7> = /Q lg(u) — g(v)|*dz < L/ﬂ |u — v|*dz2

so that F' is continuous. For p > 2 let ¢ € C*>°(2) we compute

lg(u + @) — g(u) — g'(w)ell> = /Q l9'(€(2)) = g’ (u(@)) | (@) da
for some function £ by the intermediate value theorem. We, of course, have that
lg'(€(@)) — ' (u((2))] < LIE(x) — u(@)| < Llp(z)|
l9'(§(x)) — ¢ (u(x))| < 2L
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l9'(€(x)) — g'(u(@))] < L2~ (2)|*, Vo€ (0,1).

Therefore,

lg(u+ @) = g(u) = g' (w72 < LQ?H"‘/{ () P2 da.
)
Let 2 < p < 4 then we have that p =2 4+ 2 with 0 < a < 1. We then have that

lg(u+ @) — g(u) — g'(u)pl| L2 < L2 p(2)||1H*

which proves the Frechet differentiability. Of course for p > 4 we have that
LP(Q) — L3(Q). Furthermore, for any given dimension n we have Sobolev in-
clusions H'(Q) < LP(2) with p > 2, proving the differentiability. O

Some other well-known results are quoted now.

Theorem 2.3. Let g € WYP(R™). Then the map & : WHo(R" R") — LP(R")
given by 0 — go (I +0) is differentiable in a neighbourhood of 0 and

&'(0)=(Vg)o(I+0).
Theorem 2.4 ([15, Lemme 5.3.3.]). Let g € W1P(R"),
T WhHe(R™, R") — WL (R, R")
continuous at 0 with ¥(0) = I, WH(R" R") — LP(R™) x L*°(£2),
0 — (9(0),¥(0))
differentiable at 0, with g(0) € W1P(R™) and
g'(0): WH(R",R") — WHP(R™)
continuous. Then the application & : WH(R™ R") — LP(R"),
&(0) = g(60) o ¥(0)
is differentiable at 0 and
&'(0) = ¢'(0) + Vg(0) - ¥'(0).
To conclude this section we state a classical result.

Theorem 2.5 (Implicit Function Theorem). Let X,Y and Z be Banach spaces
and let U,V be neighbourhoods on X and Y, respectively. Let F : U xV — Z
be continuous and differentiable, and assume that Dy F(0,0) € L(Y, Z) is bijective.
Let assume, further, that F(0,0) = 0. Then there exists W neighbourhood of 0 on
X and a differentiable map f: W — 'Y such that F(z, f(x)) = 0. Furthermore, for
x and y small, f(x) is the only solution y of the equation F(x,y) = 0. If F is of
class C™ then so is f.

3. DIFFERENTIATION OF SOLUTIONS. PROOF OF THEOREMS [I.3] AND

For the reader convenience we repeat here the general result in [20]:

Theorem 3.1. Let D be a bounded domain such that 0D be a piecewise C' and
assume that D is locally on one side of OD. Let ug be the solution of (1.4]). Let us
use the notation C* = C*(R™,R"™) and k > 1. Assume that

u(®) € W™ ((I + 6)D) (3.1)
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and that for every open set D' close to D (for example D' = (I + 0)D for small 6’
in the norm of C*),
A:Wm™P(D") — D'(D)
B:W™r(D'M(D)
C:wm™r(D'Y(D)
A,B,C : W™ tP(D'") — D'(D) differentiable

and C* — W™P: 0 u(h) o (I +0) is differentiable at 0. Then:
(1) The solution is differentiable in the sense that u : C* — W7 "P(D) is

loc
differentiable and the derivative the local derivative v’ in the direction of T

satisfies

g—f(uo)u’ =0, inD. (3.3)

(2) If 0 — B(u(0)) o (I + 0) is differentiable at 0, into WH(D), B(ug) €
W2Y(D) and g € W%L(R™), then u’ satisfies
0B 0
%(Uo)ul =T “%(B(Uo) - 9). (3.4)
(3) If 0 — C(u()) o (I + 0) is differentiable at 0 into L*(D), and C(ug) €
WLY(D), then 6 — J(0) is differentiable and its directional derivative in
the direction of T is:

oJ / oC , /
—(0)T = —u' dx + 7-nC(ug) dS. 3.5
530 = | 5. [ 7 nCw) (35)

Let us prove now our first contribution.

Proof of Theorem[1.3. We take several steps. For simplicity, allow the notation
Qp = (I +0)(Q).
We first check that vy satisfies
—div(A(0)Vv) + AJgg(ve) = (fo (I +6))Js
in H=(2), where
A(0) = Jo(I+ DO)" Y I+ Do), Jp=det J(I+6).

For that, consider for a given ¢ € HE(Qp) the auxiliar function ¢y = po (I+60)71 €
H}(Qy) by definition of ug we have

/ (VUQVQOQ + )\g(ue)cpg) dr = f(pg dsS VQO € H&(Qo)
Qe Qe

Then by a change of variable, the result follows.
Let us define the operator F : W1 x H}(Qq) — H~1(y), by
F(0,v) = div(A(0)Vv) + AJpg(v) — (fo (I +0))Jp
of class C! (or C™) in a neighbourhood of § = 0. On that direction we check
e 0 € Wh* s Jy = det(I + Df) € L™ of class C*™ since § € Wh> —
I+ D6 € L*°(R", M,,) and det is a polynomic operator.
e e Wl — (I+DO)~ ! = > g>o(—1)1DOT € L=(R", M,,) is C*,
o (Av) € L®(R", M,,) x H}G) — —div(AVv) € H7(G) is C* since it is
bilinear and continuous.
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e Through the lemma 60 +— k() = (fo (I +6))Jy € L*(R") C H™ () is C*

so F € C'. Note that, if f =0 then F € C™.
It holds that
DyF(0,0)p = —Ap + Ag'(u(- : 0))¢

and, since ¢’ > 0, we have that D,(0,v) : H}(G) — H~(G) is a isomorphism
by Lax-Milgram’s theorem. Through the implicit function theorem (theorem [2.5))
there exists a map § € W1 — v(0) € H}(Qo) of class Ct is f € HY(R") and C™
if f =0 such that

F(0,v(0)) =0.
If we we consider uniqueness for the elliptic problem we find that
v(0) = vy.
Simple substitution returns ug. By Theorem we have the differentiability of
U. [

Once this is done we can make explicit calculations for the directional derivative.

Proof of Theorem[1.7] Let us now characterize the directional derivative. Let 6 €
W1 be fixed, let us call v/ = 4/(0)(0) and let ® a curve of perturbations of the
identity with V' = 0. We differenciate on the variational formulation

fode = / (—urAp + Aglur)p) do o € C2(9)
RTL n
to obtain

0= / (—u'Ap + \g' (uo)u'p) dz, € CX(Q) (3.6)
Qo

(observe that h(z) = Ag'(ug(z)) is a known function). This means that v’ is a very
weak solution of the aforementioned equation . Since we know that v’ € L(R")
we can apply regularity theory for this equation.

For the boundary condition vg = 0 on 0, for all # and therefore v’ = 0, 9.
Since v; = u, o ®(7) we have

u' + Vg, -0 =v' € Hy(Q)
which provides the boundary condition. Therefore, we have
| udg g o) do= [ (Vun,-0)0up) dS. 9 CR)  (37)
Qo 090

we can obtain a Kato type inequality to shows uniqueness of very weak solutions
(see [13]). For the regularity we apply the following classical trick. Since u’ is know
we can take f = —\g'(up)u’ € L*(Q) and 77 = —Vu -0 € L*(09Q) and find z the
unique solution in H'(Qg) of

~Az=f, inQ

z=1, on 0f)
classical theory. Then z is a very weak solution of (3.7)) and, by uniqueness, u'(0) =
z € HY(Q). O

Remark 3.2. In the case that further regularity is necessary v € Hi N H™ then
deformation must taken in W™ . A theory analogous to that on [I5] for higher
differentiability can be obtained for the non-linear case.



EJDE-2015/CONF /22 AN APPLICATION OF SHAPE DIFFERENTIATION 39

4. DIFFERENTIATION THE FUNCTIONAL. PROOF OF THEOREM AND ITS
COROLLARIES

We shall follow a reasoning similar to the one presented in [I5]. Let us define
Gy = ®(t,G) and consider a function f such that f(7) € L*(G;). We take interest
on the map I : R — R,

1( /G f(rya) di = /G F(r, ®(r,y))J (7.) dy (4.1)

T) =
where f(r,2) = f(7)(x),
J(7,y) = det(Dy,®(r,y)).

Theorem 4.1. Let ® very assumptions f such that f : [0,T) — L*(R") is
differentiable at 0 and

f(0) e WHLRYN).
Then, 7+ I(1) = [, f(7) is differentiable at 0 and
o) = / £(0) + div(F(O)V).
G
If G is an open set with Lipschitz boundary then
ro) = [ o+ [ son-v.
G oG
In simpler terms, under regularity it holds that

0(/(; f(r,@)de) :/QO {%(O,m)—kdiv (f(o,x)%f(o,x))}dx. (4.2)

We have some immediate consequences of Theorem [4.1

9
or

Lemma 4.2. Let g € WHYRY) and ¥ : [0,T) — WH be continuous at 0 such
that U : [0,T) — L™ is differentiable at 0, and let Z be its derivative. Then the
mapping [0,T) — L*(R"),

T go¥(r)
is differentiable at 0 and G'(0) = Vg - Z.

Lemma 4.3 (Differentiation un(%er the integral sign). Let E be a Banach space
and f: E x Q — R be such that f : E — L'(Q)

F@) = £z,
is differentiable at zo. Let F : E — R,
F@) = [ feiy.
Then F is differentiable at zo and
DF@) = [ DP@ .

Now we can prove the third of our main results.
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Proof of Theorem[I.g It is classical that we can differentiate under the integral

sign
/ ft, x)dx
Q

with respect to ¢t as many times as f is differentiable, and that the integral commu-
tates with the derivative. This shows the derivability with vJy under the integral
sign. For the remaining equations we have to be a little more subtle and apply the
previous theorem. Let f(7) = g o u,. From the know formulas we must compute

fi(r) = (g" o uo)u

Thus
oel ([ atueraz) = [ g/ tuopu + aiv gtuo)# (o) .

If Qg is Lipschitz then

0
— (/ g(uT)dx) :/ g’(uo)u’x—i—g(O)/ ®'(0) - ndS. (4.3)
87_ 7=0 G~ Qo 990
Equation (1.10) is guaranteed since g(v) : Wh>* — HF(Q) — L1(Q) is C!, and so
we can differentiate under the integral sign. O

To show equation (|1.10) we need a formula of differentiation under the integral
sign

Proof of Corollary[1.10 Given the functional
1
1) = — / gouqdx
=101 Ja

If we do not impose constant volume we have also to differentiate the volume
measure
B fcp(G) go U@(Qo)d:ﬂ

fq>(c) dx
over a curve of deformations ®(7) we have, applying the formula of differentiation

of fractions
1 d
=0 |QO‘2 (| 0‘ dr /{;(G) g O Up(Qg)aT

df
(f avronan) (] oo

dr
which, once simplified, gives the result. O

1(®)

The proof of Corollary relies on the following Proposition.

Proposition 4.4. Let ®(1) be a volume preserving family of deformations of Qg
in the sense of Hypothesis[I.5. Then

/ div (13/(0) dxr = 0.
Qo

If G is Lipschitz then
/ ®'(0) - ndS = 0.
Q0
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Proof. Define G, = ®(Qg, 7); then

c:/ ldz.
G,

From this and theorem [.1] we obtain

0= o1 +div (19'(0)) dz,
Qo 37’

which proves the first part of the result. The second is an immediate consequence
of the divergence theorem. a

Remark 4.5. Note that the condition ®(0) = I is paramount. For example con-
sider the family of deformations

o(r)(w,) = (1 + o =)

These are isovolumetric deformations of any circle centered at 0, and of course
®(0) = 0. We can compute

1

This is only zero at 7 = 0 (that is where ®(7) = I) even though the transformations
are isovolumetric at any given 7.

divd’ (1) =1 -

Remark 4.6. For generalizing to the case g = g(x,u), we need to assume that the
Nemitskij operator G : W1>°(Q) x HL(Q) — L*(Q),
G(®,v) = g(®(x), v(z))
is C™ and that
%(x, v) > 0.
In this case the operator on the implicit function theorem will be

F(0,v) = —div(A(0)v) + g((I +0) ", v)Jp = fJo

with derivative

DLF(0,0)¢ = ~(A¢)(w) + 22 (2, o(a)p(x).

5. APPLICATIONS

Rearrangement techniques: Schwarz and Steiner symmetrization. From
Schwarz symmetrization we know (see e.g. [§], [9]) that, if g is either concave or
convex and 6 is volume preserving then 7(0) < 7(0) (that is: the sphere is the least
effective reactor). Therefore

/ o (o)’ = i7(0) = 0.
G

For the Steiner symmetrization we know that, as we have proven in [I0], for
concave g, and in [I1], for convex g (note that this is equivalent to concave (), the
following holds:



42 J. 1. DIAZ, D. GOMEZ-CASTRO EJDE-2015/CONF /22

Theorem 5.1. Let g be a concave or convexr continuous nondecreasing function
such that g(0) = 0. Let f € L*(Q) be nonnegative, i.e. f >0, and |B| = |Q"| with
B a ball. Then

(Y x Q") < n(Q' x B). (5.1)

So, for G = B X Gy 3 (x,y), we have for all deformations 8 = (61,0) with 6,
volume preserving and g convex or concave,

[ oo = [ 2 | (@' + divtauo)

(9" (uo)u’ + div,(g(uo)6:)

J;
{ [ g +90 [ 0.0}
J,

/!

g'(uo)u

Whenever the Nemitskij operator for g is of class C? we get
1'(0)(0) =0, 7"(0)(6,0) <O0.

Applying the bounds for 7/(0) we have as consequence an a priori estimate of the
effectiveness factor in terms of the value of the functional for a circular cylinder:

Proposition 5.2. If B is a ball such that |B| = || then
(B x Q) = c(p)lgloc|ulw2r[0loc < n(€ x Q") <n(B x Q7).
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FIGURE 1. Effectiveness on isovolumetric ellipses with smaller
semiaxes a, for the kinetic g(u) = 1 — (1 — u)/9.

Numerical experiments. The following numerical experiments were performed
with COMSOL Multiphysics.
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FI1GURE 2. Effectiveness on elliptic cylinders with smaller semiaxes
a, for the kinetic g(u) = 1 — (1 — u)*/?, 0 < ¢ < 1 (this kinetic
corresponds to B(w) = w?, which is known in chemistry as the
Freundlich isotherm).
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FIGURE 3. Effectiveness on rectangular cylinders [0,a] x [0,b] X
[0, h], for the kinetic g(u) =1 — (1 —u)? and h = 10.

Example 5.3 (Schwarz symmetrization). Let ¢ = g1 + g2 where g7 is convex
and go is concave. It is well known, see [§] and [J], that a sphere is the least
effective reactor for our problem in each isoperimetric family (to be more precise,
isovolumetric families). We can see this in terms of derivatives through a family of
ellipses

®(z,y,7) = (a(7)z,a(=7)y)
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FIGURE 4. A triangular cylinder.

for a regular such that a(0) = 1, even when we have no volume conservation. It
turns out that since this is a symmetric curve of linear transformations we have
that

I(r)=1I(-7).

Since we have differentiability it must hold that I’(0) = 0. Since we have that this
is a minimum and we are able to differentiate twice I"(0) = 0.

Example 5.4 (Steiner symmetrization). The same computations hold for trans-
formations
®(z,y,2,7) = (a(T)z,a(-T)y, 2)

This is a particular case of the results in [I0] and [II]. If we consider a (uni-
parametric) family of elliptic cylinders of fixed height then we have the analogous
result .

We can even do this analysis on two parametric families, for example in square
or triangular cylinder were we consider both dimensions on the basis.

This analysis can be repeated over other families, like triangular cylinders with
results of the same exact nature.
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