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MULTIPLICITY OF SOLUTIONS OF RELATIVISTIC-TYPE
SYSTEMS WITH PERIODIC NONLINEARITIES: A SURVEY

JEAN MAWHIN

Abstract. We survey recent results on the multiplicity of T -periodic solutions
of differential systems of the form“ u′p

1− |u′|2
”′

+∇uF (t, u) = e(t)

when F (t, u) is ωi-periodic with respect to ui (i = 1, . . . , N). Several tech-

niques of critical point theory are used.

1. Motivation: the forced pendulum and corresponding systems

The periodic problem for the forced pendulum equation

u′′ + a sinu = e(t), u(0) = u(T ), u′(0) = u′(T ) (1.1)

has been for almost one century a source of inspiration for ordinary differential
equations and nonlinear functional analysis, and a cornerstone for most nonlinear
techniques (see e.g. [16, 18]). In particular its solutions are the critical points of
the Lagrangian action functional

L(u) :=
∫ T

0

[u′2
2

+ a cosu+ eu
]
dt

in the Sobolev space H1
T = {u ∈ H1([0, T ]) : u(0) = u(T )}.

In 1922, Hamel [12] proved that for each e ∈ C([0, T ]) such that

e := T−1

∫ T

0

e(t) dt = 0,

there exists at least one solution of (1.1) minimizing L(u) over T -periodic C1 func-
tions. This result was rapidly forgotten and, following a renewal of interest for the
problem, in 1980, due to Castro’s application [6] of some minimax method to (1.1),
Hamel’s theorem was rediscovered independently around 1981 by Willem [27] and
Dancer [10] in the more natural framework of H1

T . Because of the structure of the
equation, if u is a solution, the same is true for u+ 2kπ for all k ∈ Z, so that two
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solutions of (1.1) are called geometrically distinct if they do not differ by an integer
multiple of 2π.

As shown by the special case of the unforced pendulum, Hamel’s existence con-
clusion is not optimal and, in 1984, the following multiplicity result was proved in
[20].

Theorem 1.1. For each e ∈ L1(0, T ) such that e = 0, problem (1.1) has at least
two geometrically distinct solutions.

The second solution was obtained by a mountain pass type argument between a
minimizing solution u0 and the other one u0+2π. The unforced case shows that this
multiplicity result is optimal if no restriction is made upon a and T . An immediate
generalization of Theorem 1.1, based upon the same arguments, holds for a sinu
replaced by a Carathéodory function f(t, u) such that F (t, u) :=

∫ u
0
f(t, s) ds is ω

periodic in u for a.e. fixed t ∈ [0, T ], and some ω > 0.
The solutions of the N -dimensional corresponding problem

u′′ +∇uF (t, u) = e(t), u(0) = u(T ), u′(0) = u′(T ), (1.2)

where e ∈ L1(0, T ; RN ), F : [0, T ] × RN → R and ∇uF : [0, T ] × RN → RN are
Carathéodory functions such that

F (t, u+ ωjej) = F (t, u) (j = 1, . . . , N) (1.3)

for a.e. t ∈ [0, T ], all u ∈ RN , and some ωi > 0 (i = 1, . . . , N), are the critical
points of the Lagrangian action functional

LN (u) :=
∫ T

0

[ |u′|2
2
− F (t, u) + (e|u)

]
dt

in the Sobolev space H1
T = {u ∈ H1([0, T ],RN ) : u(0) = u(T )}. Here and in the

whole paper, (·|·) denotes the inner product in RN and | · | the corresponding norm.
In 1984, the following result was proved in [21].

Theorem 1.2. If F satisfies assumption (1.3), then, for each e ∈ L1(0, T ; RN )
such that e = 0, problem (1.2) has at least two geometrically distinct solutions.

Geometrically distinct solutions of (1.2) are of course solutions whose differences
are not of the form

∑N
i=1 kiωi for some (k1, . . . , kN ) ∈ ZN . The proof of Theorem 1.2

is an easy extension of the argument of the scalar case. Such a multiplicity result
is not optimal, as easily seen, and was improved around 1988 independently by
Rabinowitz [24], Chang [7], and the author [17], who got the following multiplicity
conclusion.

Theorem 1.3. If F satisfies assumption (1.3), then, for each e ∈ L1(0, T ; RN )
such that e = 0, problem (1.2) has at least N + 1 geometrically distinct solutions.

Although they present technical differences, the three proofs of this result use the
fact that LN (u+ ωje

j) = LN (u) (j = 1, . . . , n) and some Ljusternik-Schnirelmann
category arguments.

2. The relativistic forced pendulum and corresponding systems

In 2010, it was shown in [4] that the solutions of the ‘relativistic forced pendulum
equation’, i.e. the solutions of the problem( u′√

1− u′2
)′

+ a sinu = e(t), u(0) = u(T ), u′(0) = u′(T ), (2.1)
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namely the functions u of class C1 on C([0, T ] such that ‖u′‖∞ < 1, u′
√

1−u′2 is
absolutely continuous on [0, T ] and which verify the differential equation in (2.1)
almost everywhere, and the periodic boundary conditions, can be associated to the
critical points of the action defined by

R(u) :=
∫ T

0

[
1−

√
1− |u′|2 + a cosu+ eu

]
dt

on the closed convex set

K = {u ∈W 1,∞([0, T ]) : u(0) = u(T ), ‖u′‖∞ ≤ 1},
where ‖·‖∞ denotes the L∞-norm. In 2011, it was shown in [2] that those solutions
could be seen as well be associated to the critical points in the sense of Szulkin [25]
of the functional given on CT = {u ∈ C([0, T ]) : u(0) = u(T )} by

S(u) = Φ(u) + G(u),

where Φ is defined on C([0, T ]) by

Φ(u) :=

{∫ T
0

[1−
√

1− |u′|2] dt if u ∈W 1,∞([0, T ])
+∞ if u ∈ C([0, T ]) \W 1,∞([0, T ])

and G is defined on C([0, T ]) by

G(u) =
∫ T

0

[a cosu+ eu] dt.

Φ is convex, proper, lower semi-continuous, and G of class C1, so that S has the
structure required by Szulkin’s critical point theory [25]. When e = 0, R and S
are bounded from below, and satisfy a suitable version of Palais-Smale condition
on their set of definition. Consequently, they reach there a minimum, and one
can show that such minimum corresponds to a solution of (2.1) (this is less trivial
than in the case of (1.1)). Hence, the following extension of Hamel’s result to (2.1)
follows [4, 2] : for each e ∈ L1(0, T ) such that e = 0, problem (2.1) has at least one
solution minimizing R on K (or S on CT ). Another proof of this existence result,
based upon some Hamiltonian equivalent formulation (described later in a different
context) and a saddle point theorem, has been given in 2012 by Manásevich and
Ward [14].

Like in the classical case, such a conclusion is not optimal for (2.1) and, in 2012,
Bereanu and Torres [3] have proved the following multiplicity result.

Theorem 2.1. For each e ∈ C([0, T ]) such that e = 0, problem (2.1) has at least
two geometrically distinct solutions.

Their proof is modeled on the one of [20] for the classical pendulum, but tech-
nically more involved. One first shows the existence of two positive minimizers
u0, u0 + 2π of S on CT , then considers a modified problem like in the method of
lower and upper solutions with lower solution α = u0, and upper solution β = u1.
Finally one shows that Szulkin’s critical points of the corresponding modified action
are solutions of (2.1), and obtains the second solution of the modified action by a
mountain pass argument.

In 2012, Fonda and Toader [11] and, in 2013, Marò [15] have proved Theorem 2.1
by applying a Poincaré-Birkhoff type fixed point theorem to the equivalent Hamil-
tonian formulation mentioned above, and Marò has obtained the supplementary
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information that one of the solutions is unstable. An extension of Theorem 2.1 is
easily obtained when a sinu is replaced by ∂uF (t, u), with F (t, u) ω-periodic in u.

If e ∈ L1(0, T ; RN ), if the functions F (t, u) and ∇uF (t, u) are defined and con-
tinuous on [0, T ]×RN , and if assumption (1.3) holds, one can consider the periodic
problem for a relativistic system( u′√

1− |u′|2
)′

+∇uF (t, u) = e(t), u(0) = u(T ), u′(0) = u′(T ). (2.2)

Its concept of solution is defined in an analogous way as for (2.1). With now

CT := {u ∈ C([0, T ],RN ) : u(0) = u(T )},
one defines S : CT → (−∞,+∞] by

S(u) = Φ(u) + G(u), (2.3)

where

Φ(u) :=

{∫ T
0

[1−
√

1− |u′|2] dt if u ∈W 1,∞([0, T ],RN )
+∞ if u ∈ CT \W 1,∞([0, T ],RN ),

and

G(u) =
∫ T

0

[−F (t, u) + (e|u)] dt.

In 2011, using the approach of [4], the following existence result was proved in [5].

Theorem 2.2. If F satisfies assumption (1.3), then, for each e ∈ L1(0, T ; RN )
such that e = 0, problem (2.2) has at least one solution.

The extension to systems of the methods used in [3, 11, 15] for a scalar equation
seeming difficult, the obtention of multiplicity results similar to Theorem 1.3 for
system (2.2) has required different approaches, that we now describe.

3. A Hamiltonian approach

The first result was given in 2012 in [19]. It is assumed that F and ∇uF exist and
are continuous, and, for simplicity, we extend them as well as e, by T-periodicity,
to R× RN and to R respectively. Setting

v =
u′√

1− |u′|2

in (2.2), which is equivalent to

u′ =
v√

1 + |v|2
,

we immediately see that (2.2) is equivalent to the first order problem

v′ = −∇uF (t, u) + e(t), u′ =
v√

1 + |v|2
, u, v T -periodic. (3.1)

Defining H : R× RN × RN → R by

H(t, u, v) :=
√

1 + |v|2 − 1 + F (t, u)− (e(t)|u),

we see that (3.1) has the Hamiltonian form

v′ = −∇uH(t, u, v), u′ = ∇vH(t, u, v), u, v T -periodic. (3.2)
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The action functional naturally associated to (3.2) is given by

H(v, u) =
∫ T

0

[
− (v|u′) + F (t, u)− (e|u) +

√
1 + |v|2 − 1)

]
dt.

If we define the Sobolev space

H
1/2
T = {(v, u) ∈ H1/2([0, T ],R2N ) : v and u are T -periodic},

then a standard result (see e.g. [23]) implies that if e ∈ Ls(0, T ; RN ) for some
s > 1, then H ∈ C1(H1/2

T ,R) and its critical points solve (3.2), or, explicitly, (3.1).
Furthermore, it is easy to check that if e = 0, and F satisfies condition (1.3), then

H(v, u1 + k1ω1, . . . , uN + kNωN ) = H(v, u)

for all (v, u) ∈ H1/2
T and all (k1, . . . , kN ) ∈ ZN . Consequently, we can consider H

as defined on TN × E, where

E = {(v, u) ∈ H1/2
T : u = 0}

and TN is the n-torus. It can be shown that E = E−⊕E0⊕E+ where E0 ' RN , the
linear operator associated to the quadratic form (v, u) 7→

∫ T
0

[−(v|u′)] dt is negative
definite on E−, positive definite on E+, and

H(v, u)→ +∞ for all u ∈ RN when |v| → ∞ in E0.

Therefore H satisfies the conditions of an abstract saddle point theorem for indef-
inite functionals proved in 1990 by Szulkin [25], and based upon the concept of
relative Ljusternik-Schnirelmann category, which implies the following multiplicity
result for (2.2).

Theorem 3.1. If F satisfies assumption (1.3), then, for each e ∈ Ls(0, T ; RN ) for
some s > 1, such that e = 0, problem (2.2) has at least N + 1 geometrically distinct
solutions.

As one can see, the proof of Theorem 3.1 is technically sophisticated, both from
the critical point theory side, because H is an indefinite functional, and from the
topological side, because the relative category is a more involved and delicate con-
cept than Ljusternik-Schnirelmann category. Hence the result of [19] raises the
following natural questions:

(1) Can e ∈ Ls for some s > 1 be replaced by the more natural assumption
e ∈ L1?

(2) Can the result be proved using Lagrangian action and classical category?

4. A Lagrangian approach

In 2013, Bereanu and Jebelean [1] proved Theorem 3.1, when F , ∇uF and e are
continuous, through an extension to convex, lower semicontinuous perturbations
of a C1-functional on a Banach space, i.e. to functionals of Szulkin type [25],
of an abstract multiplicity result for some symmetric C1 functionals given in [22,
Theorem 4.12], and motivated by Rabinowitz’ approach in [24].

Let X be a Banach space with dual X∗ and duality mapping 〈·, ·〉, G a discrete
additive subgroup of X such that span(G) has finite dimension N , π : X → X/G
the canonical projection. So G ' ZN , X = RN ⊕ Y for some closed subspace Y ,
u = u + ũ, with u ∈ RN , ũ ∈ Y . A ⊂ X is G-invariant if u + g ∈ A for all u ∈ A
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and g ∈ G, f : X →M is G-invariant if f(u+ g) = f(u) for all u ∈ X and g ∈ G.
The following assumptions are made:

(H1) G ∈ C1(X,R) is G-invariant, G′ takes bounded sets into bounded sets.
(H2) Ψ : X → (−∞,+∞] is G-invariant, convex, lower semicontinuous, with

closed non-empty domain D(Ψ) ⊃ {u ∈ X : ‖ũ‖ ≤ ρ, |Ψ(u)| ≤ ρ}, Ψ(0) =
0, Ψ(u) = Ψ(ũ) for all u ∈ X.

(H3) Any sequence (un) in X with (un) bounded has a convergent subsequence.
According to [25], u ∈ X is a critical point of S = Ψ + G if

〈G′(u), v − u〉+ Ψ(v)−Ψ(u) ≥ 0 for all v ∈ X.

Let
K = {u ∈ X : u is a critical point}

be the critical set of S, and let Kc = {u ∈ K : S(u) = c}. It is easy to see that
S,S ′,K,Kc are G-invariant. Hence, if u is a critical point of S, the same is true
for u+ g for all g ∈ G, and the set {u+ g : g ∈ G} is called a critical orbit of S.

If N is an open neighborhood of Kc and ε > 0, we set

Nε = {u ∈ X \ N : |u| ≤ 2, S(u) ≤ c+ ε}.

The following equivariant deformation lemma, which combines similar results in
[22, 25], is essential to prove the multiplicity result.

Lemma 4.1. Let c ∈ R and N be a G-invariant neighborhood of Kc. Then, for
each ε ∈ (0, 1], there exists ε ∈ (0, ε], dε > 0, ε′ ∈ (0, ε] and η ∈ C([0, t] ×Nε, X),
with the following properties:

(i) η(0, ·) = idNε
.

(ii) η(t, u + g) = η(t, u) + g for all (t, u) ∈ [0, t] × Nε and all g ∈ G with
u+ g ∈ Nε.

(iii) ‖η(t, u)− u‖ ≤ dεt for all (t, u) ∈ [0, t]×Nε.
(iv) S(η(t, u))− S(u) ≤ dεt for all (t, u) ∈ [0, t]×Nε.
(v) S(η(t, u))− S(u) ≤ −ε′t/2 for all (t, u) ∈ [0, t]× (Nε ∩ S−1([c− ε,+∞))).
(vi) if A ⊂ Nε with c ≤ supA S, then, for all t ∈ [0, t],

sup
A
S(η(t, ·))− sup

A
S ≤ −ε′t/2.

From this lemma, one can construct a deformation in the quotient space π(X).
Defining, like in [22],

Aj = {A ⊂ X : A is compact and catπ(X)(π(A)) ≥ j},

one can check that Aj 6= ∅ for each j = 1, . . . , N + 1 and Aj is a complete metric
space for the Hausdorff distance. Furthermore, the function σ : Aj → (−∞,+∞]
defined by

σ(A) = sup
A∈Aj

S

is lower semicontinuous and bounded from below. Ekeland’s variational principle
and a rather standard argument of Ljusternik-Schnirelmann type give the following
multiplicity result.

Proposition 4.2. Under assumptions (H1)–(H3), the functional S = Ψ +G has at
least N + 1 critical orbits.
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By applying Proposition 4.2 to the functional S : CT → (−∞,∞] defined in
(2.3) with the group

G =
{ N∑
k=1

kiωie
i : ki ∈ Z, i = 1, . . . , N

}
, (4.1)

one obtains easily the following multiplicity result.

Theorem 4.3. If F satisfies assumption (1.3), then, for each e ∈ C([0, T ],RN )
such that e = 0, problem (2.2) has at least N + 1 geometrically distinct solutions.

The proof of Proposition 4.2 given in [1] is quite complicated and technical, but
only uses classical Ljusternik-Schnirelmann category. In the following section, we
describe a recent approach given in [13], which answers positively the two questions
of the end of Section 3, by obtaining the requested multiplicity result through the
use of a modified equivalent problem, whose action functional is defined in the
classical Sobolev space H1

T , and to which Theorem 4.12 of [22] can be directly
applied.

5. A modified Lagrangian approach

Let e ∈ L1(0, T ; RN ), and assume that F (t, ·) and ∇uF (t, ·) are continuous for
a.e t ∈ [0, T ], that F (·, u) and ∇uF (·, u) are measurable for each u ∈ RN , and that
there exists some α ∈ L1(0, T ) such that

|F (t, u)|+ |∇uF (t, u)| ≤ α(t)

for a.e. t ∈ [0, T ] and all u ∈ RN . Define, for v ∈ B(1) ⊂ RN ,

ϕ(v) :=
v√

1− |v|2
,

so that
ϕ−1(w) =

w√
1 + |w|2

for all w ∈ RN .

Let us introduce a modification of ϕ inspired by recent papers of Coelho et al [8, 9]
in problems of positive solutions with Dirichlet conditions, but technically different,
by setting

K := ϕ−1
(
B(
√
n‖α‖L1)

)
⊂ B(1),

fixing R ∈ (0, 1) in such a way that

R√
1−R2

≥
√
n‖α‖L1 , K ⊂ B(R),

and defining the homeomorphism ψ : RN → RN by

ψ(y) := (1−min{|y|2, R2})−1/2y,

in such a way that

ψ−1(v) = max
{

(1−R2)1/2, (1 + |v|2)−1/2
}
v.

Lemma 5.1. For all y, z ∈ RN , one has

(ψ(z)− ψ(y)|z − y) ≥ |z − y|2, |ψ(y)| ≤ 1√
1−R2

|y|.
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With this ψ, let us consider the modified problem

(ψ(u′))′ +∇uF (t, u) = e(t), u(0) = u(T ), u′(0) = u′(T ) (5.1)

The choice of R above allows us to prove the following equivalence result.

Lemma 5.2. u ∈ C1 is solution of (2.2) if and only if it is a solution of (5.1).

If we define now Ψ : RN → R by

Ψ(y) := 1− 1−min{|y|2, R2}+ 1− |y|2

2
√

1−min{|y|2, R2}
,

it is easy to show that Ψ is of class C1 and that

ψ(y) = ∇Ψ(y), (1/2)|y|2 ≤ Ψ(y) ≤ 1√
1−R2

|y|2

for all y ∈ RN . Consequently the functional M given by

M(u) :=
∫ T

0

[Ψ(u′)− F (t, u) + (e|u)] dt

is well defined and of class C1 on H1
T , and

〈M′(u), v〉 =
∫ T

0

[(ψ(u′)|v′)− (∇uF (t, u)− e|v)] dt,

for all u, v ∈ H1
T , so that its critical points correspond to the weak, and hence to

the Carathéodory solutions of (5.1). On the other hand, the following version of
Palais-Smale condition can be proved.

Lemma 5.3. Each sequence (un) in H1
T such that (M(un)) is bounded, M′(un)→

0, and (un) is bounded, contains a convergent subsequence.

As mentioned above, [22, Theorem 4.12] is just the version of Proposition 4.2
for a C1 functional, and we keep the notations of Section 4. If I ∈ C1(X,R)
is G-invariant, we introduce the following type of Palais-Smale condition, called
the (PS)G-condition : for each sequence (un) in X with (G(un)) bounded and
G′(un)→ 0, (π(un)) contains a convergent subsequence. Theorem 4.12 in [22] goes
as follows.

Proposition 5.4. If the vector space spanned in X by G has finite dimension N ,
and if I ∈ C1(X,R) is G-invariant, satisfies (PS)G-condition, and is bounded from
below, then I has at least N + 1 critical orbits.

The proof of Proposition 5.4 given in [22] is based upon Ekeland variational
principle and classical Ljusternik-Schnirelmann category. As shown in [22], it pro-
vides a proof of Theorem 1.3 for the classical pendulum system. It also implies the
corresponding result for (2.2).

Theorem 5.5. If F satisfies condition (1.3), then, for each e ∈ L1(0, T ; RN ),
problem (2.2) has at least N + 1 geometrically distinct solutions.

Sketch of the proof. By Lemma 5.2, it suffices to prove that the modified action
function M satisfies the conditions of Proposition 5.4. It is easy to see that

M(u) =
∫ T

0

[Ψ(u′)− F (t, u) + (e(t)|ũ)] dt =M(u+ ωie
i)
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for all i = 1, . . . , n and u ∈ H1
T . If we define G by (4.1), using Lemma 5.1 and the

Wirtinger and Sobolev inequalities, and denoting the Lp-norm by ‖ · ‖p, one can
show that the inequality

M(u) ≥ 1
2
‖ũ′‖22 − C2‖α‖1 − C1‖h‖1‖ũ′‖2

holds, and that M satisfies the (PS)G-condition. Then the result follows from
Proposition 5.4. �
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