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QUALITATIVE ANALYSIS OF A MATHEMATICAL MODEL FOR
MALARIA TRANSMISSION AND ITS VARIATION

ZHENBU ZHANG, TOR A. KWEMBE

Abstract. In this article we consider a mathematical model of malaria trans-

mission. We investigate both a reduced model which corresponds to the sit-
uation when the infected mosquito population equilibrates much faster than

the human population and the full model. We prove that when the basic
reproduction number is less than one, the disease-free equilibrium is the only

equilibrium and it is locally asymptotically stable and if the reproduction num-

ber is greater than one, the disease-free equilibrium becomes unstable and an
endemic equilibrium emerges and it is asymptotically stable. We also prove

that, when the reproduction number is greater than one, there is a minimum

wave speed c∗ such that a traveling wave solution exists only if the wave speed
c satisfies c ≥ c∗. Finally, we investigate the relationship between spread-

ing speed and diffusion coefficients. Our results show that the movements of

mosquito population and human population will speed up the spread of the
disease.

1. Introduction

Malaria is one of the most devastating diseases and a leading cause of death in
the tropical regions of the world [10]. Half of the world’s population is at risk for
malaria, which is endemic in more than 100 countries. Although preventable and
treatable, malaria causes significant morbidity and mortality, especially in resource-
poor regions [30].

Malaria is an infectious disease caused by the Plasmodium parasite and transmit-
ted to humans through the bite of infected anopheles mosquitoes [7]. The incidence
of malaria has been growing recently due to increasing parasite drug-resistance on
one hand and mosquito insecticide-resistance on the other hand.

Malaria is spread in three ways. The most common way is by the bite of an
infected anopheles mosquito. Although malaria could also be spread through a
transfusion of infected blood and by sharing needle with an infected person, they
can, in this case, be effectively prevented. Therefore, as long as we can find an ef-
fective preventive measure to prevent the spread of malaria by mosquitoes, malaria
could be reduced or eradicated. Although, in some tropical regions, malaria has
decreased recently, in some areas, the transmission of the disease is still a severe

2010 Mathematics Subject Classification. 35C07, 35K51, 35K58, 35Q92.

Key words and phrases. Malaria; equilibrium; stability; traveling waves; spreading speed.
c©2016 Texas State University.

Published March 21, 2016.

197



198 Z. ZHANG, T. A. KWEMBE EJDE-2016/CONF/23

threat and the factors that maintain the transmission continues to be of great
challenge. As reported in ([30]) intervention mechanisms have increased but other
factors including poor sanitation, weak health systems, limited disease surveillance
capabilities, drug and insecticide resistance, natural disasters, armed conflicts, mi-
gration, and climate change continue to complicate malaria control efforts in the
most affected regions of the world. Therefore, it is very important to investigate
these factors thoroughly by developing and analyzing appropriate mathematical
models to establish the essential tools and identifiable targets needed to eliminate
the transmission of malaria.

Mathematical models are among the most important useful tools that are of-
ten applied in identifying control measures that are most important, as well as in
quantifying the effectiveness of different control strategies in controlling or elim-
inating malaria in endemic regions ([25]). Mathematical modeling as a tool for
gaining deeper insights in the control of the spread of malaria began in 1911 with
the Ross’s model ([26]) and extended by MacDonald in his 1957 landmark book
[19]. The resulting two-dimensional prey-predator model describing the interac-
tions between the human and mosquito populations and malaria transmission is
commonly known as the Ross-MacDonald model [19]. Since then, mathematical
models of various levels of complexity have been developed to explore the possibili-
ties of controlling and eliminating malaria infection. Notable contributions include
dynamics models incorporating acquired immunity proposed by Dietz, Molineaux
and Thomas [8]. Aron expanded on the ideas of Dietz, Molineaux and Thomas in
[4]. A thorough review of existing mathematical models of malaria and control can
be found in Anderson and May [3], Aron and May [5], Koella [11] and Nedelman
[21]. There have also been some recent elegant models that included environmental
factors in [17, 34, 35]. The spread of anti-malaria resistance models is treated in [12]
and the mathematical models incorporating the evolution of immunity is covered
in [13]. Very recently, Ngwa and Shu [23] and Ngwa[22] proposed a dynamical sys-
tem of compartmental model for the spread of malaria with a susceptible - exposed
- infectious - recovered - susceptible (SEIRS) pattern for humans and a suscepti-
ble - exposed - infectious (SEI) pattern for mosquitoes. In his Ph.D. dissertation,
Chitnis in [6] and Chitnis et al in [7] analyzed a similar model for malaria transmis-
sion. Although some of these models are quite sophisticated, they are non-spatial.
The common trend for these models is in the investigation of the dynamic char-
acteristics of the Ross mosquitoes and human reproductive number R0. The Ross
reproductive number R0 is generally defined as the number of secondary infections
that one infectious person would produce in a fully susceptible population through
the entire duration of the infectious period. As a concept, it is derived from the
idea of a reproductive number in population dynamics which is defined as the ex-
pected number of offspring that one organism will produce over its lifespan. In the
dynamic malaria models that have evolved over time, the reproductive number in
each case defers only by the number of equations in the systems and the parameters
characterizing the evolution of the population variables. The analysis of the models
in each case shows the existence of two equilibriums, the endemic and disease-free
equilibriums. In particular, they proved the Ross assertion that when R0 > 1,
there exist a unique endemic equilibrium and when R0 ≤ 1, there is a disease-
free equilibrium. Other variations included bifurcation and stability analysis of the
ensuing systems of the first order ordinary differential equations [1, 6, 7, 10, 23].
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However, the fact that human and mosquito populations move randomly suggests
the development of the malaria mathematical models that incorporate the diffusive
movements of human and mosquitoes. In particular, with the development of trans-
portation and globalization, human movement becomes more and more popular. It
turns out that, for many diseases including malaria, human population movement
contributes greatly to the spread and persistence of the disease [9], and is there-
fore an important consideration when implementing intervention strategies [32].
Despite this, little is known about human movement patterns and their epidemi-
ological consequences [29]. In fact, the failure of the Global Malaria Eradication
Programme in the 1950s and 1960s may be due, in part, to the failure to take into
account human movement [9]. In this project we will assume that both human
hosts and mosquitoes are in random motion drifting from areas of high densities
to low densities. In fact, Weinberger, et al. incorporated this principle in the de-
velopment of theories for the linear determinacy for spread in cooperative models
[31]. In this development they constructed a discrete-time recursion system with
a vector of population distributions of species and an operator that models the
growth, interaction, and migration of the species. They developed results that in-
corporated the local invasion of equilibrium of cooperating species by a new species
or mutant. They established that the change in equilibrium density of each species
spreads at its own asymptotic speed with the speed of the invader the slowest of
the speeds. The growth, interaction, and migration operator is chosen to insure
that all species spread at the same asymptotic speed and the speed agreed with
that of the invader for a linearized problem in which case the recursion has a single
linearly determinate speed. They suggested that these conditions could be verified
for the case of age dependent reaction-diffusion models. Following their work, Lou
and Zhao [18] studied an age-dependent reaction-diffusion malaria model with in-
cubation period in the vector population and established the existence of spread
speed for malaria in endemic and disease-free regions. Inspired by this work, Wu
and Xiao [33] derived a non-age dependent time-delayed reaction-diffusion malaria
model. In this work, they analyzed the positivity and invariance of traveling wave
solutions of the resulting Cauchy problem in an unbounded domain. They then
related the Ross reproduction ratio R0 to the threshold that predicts the spread
of malaria and showed the existence of traveling wave solutions connecting the two
steady states known as the disease-free steady state and the endemic steady state
that exist if R0 > 1 and traveling wave solutions connecting the disease-free steady
state itself do not exist if R0 < 1. There is no conclusion in the case when R0 = 1.

In this paper, we have modified the Ross-MacDonald model to a reaction-
diffusion system that is not a time-delayed system having the Weinberger et al.
growth, interaction, and migration operator type to investigate the existence and
stability of steady states. We will also investigate the existence of traveling wave
solutions and establish the endemic and disease-free steady states in terms of the
asymptotic spread speeds of mosquitoes and human. It is well-known that, for an
epidemic disease model, the existence of traveling wave solutions implies the spatial
spread of the epidemic wave of infectiousness into the population. We will inves-
tigate the existence of traveling wave solutions under different assumptions and
derive some sufficient and (or) necessary conditions on the parameters for the exis-
tence of traveling wave solutions that provide for a deeper insights into how malaria
invade the human population. These results will provide the decision maker some
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useful references to take appropriate control or preventive measures. We will also
investigate the effect of human movement on the spreading speed of the disease.

This paper is organized as follows: In Section 2, we describe the model and the
meaning of the parameters in the model. In Section 3, we consider a simplified
model and investigate the existence of traveling waves. In Section 4, we consider
the full model and investigate the existence of steady states and their stability, the
existence of travelling waves, and the effect of diffusion on the spreading speed of
the disease. In section 5, we present some numerical simulations to verify some
of our theoretical results derived in previous sections, and finally we make a short
conclusion based on our mathematical analysis.

2. Description of the model

We will consider a simple modification of Ross-Macdonald model. We consider
one spatial dimension case. Since malaria transmission is restricted to only a few
kilometers from specific mosquito breeding sites [1], we take the region to be the
whole space R. Because the life expectancy of a human is much longer than that of
a mosquito we assume that the population of humans is closed with no births and
no deaths except from malaria. We also assume that humans and mosquitoes are
either infected or uninfected and the total numbers of humans and mosquitoes are
constants. Thus we need only investigate the dynamics of the infected humans and
mosquitoes. Let u(t, x) and v(t, x) be the spatial densities of infected humans and
infected mosquitoes at time t in x, respectively. Let a be the human-biting rate;
that is, the rate at which mosquitoes bite humans, b be the mosquito-to-human
transmission efficiency, that is, the probability, given an infectious mosquito has
bitten a susceptible human, that the human becomes infected, and r be the human-
to-mosquito transmission efficiency, that is, the probability, given a susceptible
mosquito has bitten an infectious human, that the mosquito becomes infected.
Assume that both humans and mosquitoes are allowed to diffuse with diffusive
coefficients D and d, respectively. We let m denote the ratio of the number of
mosquitoes to humans, η denote the human recovery rate due to treatment, and
δ denote the per capita death rate of infected human hosts due to the disease.
We let µ denote the mosquito death rate. Then one version of the modified Ross-
MacDonald mathematical model for malaria transmission with diffusion in one
spatial dimension case is

∂u

∂t
= Duxx +mabv(1− u)− (η + δ)u, x ∈ R, t > 0,

∂v

∂t
= dvxx + aru(1− v)− µv, x ∈ R, t > 0,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ R,

(2.1)

where u0(x) ≥ 0 6≡ 0 and v0(x) ≥ 0 6≡ 0 are the initial densities of infected human
population and infected mosquito population, respectively.

3. A reduced model

As the first step, same as in [25], we assume that the infected mosquito population
equilibrates much faster than the infected human population. Thus, by assuming
that the mosquito population dynamics is at equilibrium, the equations in (2.1) can
be reduced to the single equation:
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∂u

∂t
= Duxx +

ma2bru

aru+ µ
(1− u)− (η + δ)u, x ∈ R, t > 0.

Simplifying this equation as in [25], we obtain

∂u

∂t
= Duxx + f(u), x ∈ R, t > 0, (3.1)

where

f(u) =
[αβ − µ(η + δ)− β(α+ η + δ)u]u

βu+ µ
,

α = mab, β = ar. This is the equation we are going to analyze in this Section.
First, we investigate constant steady states and their stability. By setting f(u) =

0 we obtain the following two equilibria: one disease-free equilibrium u0 = 0 and
the other one is the endemic equilibrium,

ue =
αβ − µ(η + δ)
β(α+ η + δ)

,

which exists when
αβ − µ(η + δ) > 0. (3.2)

In terms of the original parameters, (3.2) is equivalent to the basic reproduction
number R0 > 1:

R0 =
ma2br

µ(η + δ)
> 1.

By direct computations, we have

f ′(u) =
µ[αβ − µ(η + δ)]− 2βµ(α+ η + δ)u− β2(α+ η + δ)u2

(βu+ µ)2
.

Thus, we have

f ′(0) =
αβ − µ(η + δ)

µ
.

Therefore, if αβ − µ(η + δ) < 0, that is, in the case that there exists only one
equilibrium u0, then f ′(0) < 0 and u0 = 0 is locally asymptotically stable. If
αβ − µ(η + δ) > 0, that is, when the endemic equilibrium ue exists, then f ′(0) > 0
and u0 = 0 is unstable. In this case,

f ′(ue) = − (α+ η + δ)[αβ − µ(η + δ)]
α(β + µ)

< 0.

Therefore, ue is asymptotically stable. Specifically, we have the following stability
theorem from [36, Theorem 4.3.12].

Theorem 3.1. If αβ − µ(η + δ) > 0, 0 ≤ φ(x) ≤ ue and φ(x) 6≡ 0, then the initial
value problem

∂u

∂t
= Duxx + f(u), x ∈ R, t > 0,

u(0, x) = φ(x), x ∈ R,

has a unique global solution uφ(t, x) which satisfies

lim
t→∞

uφ(t, x) = ue.
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Let w = u/ue, then (3.1) can be written as

∂w

∂t
= Dwxx + g(w), x ∈ R, t > 0, (3.3)

where

g(w) =
(α+ η + δ)[αβ − µ(η + δ)]w(1− w)

[αβ − µ(η + δ)]w + µ(α+ η + δ)
.

Obviously, we have g(0) = g(1) = 0 and for 0 < w < 1, g(w) > 0. By direct
computations we have

g′(0) = f ′(0) =
αβ − µ(η + δ)

µ
.

It is easily seen that, when αβ − µ(η + δ) > 0 and 0 < w < 1,

g(w) <
(α+ η + δ)[αβ − µ(η + δ)]w

µ(α+ η + δ)
=
αβ − µ(η + δ)

µ
w = g′(0)w.

Therefore, by a well-known result from [14] (see also[24, 31]), we know that

c∗ = 2
√
g′(0)D = 2

√
D[αβ − µ(η + δ)]/µ

is the spreading speed of (3.3). It is also the spreading speed of (3.1). This means
that if an observer travels in the direction of propagation at a speed that is above
c∗, he would observe that there is no infected population. Specifically, this means
that any solution u(t, x) with initial value u(0, x) ≡ 0 outside a finite ball |x| ≤ R
satisfies

lim
t→∞,|x|≥(c∗+ε)t

u(t, x) = 0,

where ε > 0 is an arbitrarily small number.
Now we investigate the existence of traveling wave solutions of (3.3). Let’s

assume that (3.3) has a traveling wave solution w(t, x) = q(x − ct), then q(ξ)
satisfies

Dq′′ + cq′ + g(q) = 0, (3.4)

where

q′ =
dq

dξ
.

We investigate the existence of two types of traveling wave solutions. That is, the
existence of pulse wave solutions and the existence of wave fronts. To study the
existence of pulse wave solutions, we require that q(−∞) = q(∞) = 0 and q(ξ) > 0.
This implies there is a pulse wave of infections which propagates into the uninfected
population. By linearizing (3.4) near q = 0, we have

Dq′′ + cq′ +
αβ − µ(η + δ)

µ
q ≈ 0, (3.5)

Thus,

q(ξ) ≈ e
−c±
√
c2−4D[αβ−µ(η+δ)]/µ

2D .

Since we require q(ξ)→ 0 as ξ → ±∞ with q(ξ) > 0, this solution cannot oscillate
about q = 0. Otherwise, q(ξ) < 0 for some ξ. So, if a pulse wave solution exists,
the wave speed c must satisfy

c ≥ c∗ = 2
√
D[αβ − µ(η + δ)]/µ.
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Thus, if αβ − µ(η + δ) < 0, there is no pulse wave solution. A pulse wave solution
can exist only if αβ − µ(η + δ) > 0. But we know that this is the condition for the
endemic equilibrium to exist. Thus, we know that a pulse wave solution can exist
only when ue exists. We also see that the minimum wave speed is the spreading
speed and it depends on D. The bigger D is , the bigger the wave speed. This
implies that the movement of human will speed up the spread of the infection.

Now we investigate the existence of wave fronts. To do this we require that
q(−∞) = 1 and q(+∞) = 0 and q(ξ) is monotonic decreasing. Due to the specific
form of g(w) which satisfies the conditions of [36, Theorem 2.2.13], we have the
following theorem.

Theorem 3.2. There exists a minimal wave speed c∗:

c∗ = 2

√
D[αβ − µ(η + δ)]

µ

such that the sufficient and necessary condition for (3.3) to have a wave front
w = q(x− ct) satisfying

q(−∞) = 1, q(+∞) = 0

is c ≥ c∗.

Again we see that if αβ−µ(η+δ) < 0, there is no wave front. Same as before, we
know that only when the endemic equilibrium ue exists that a wave front solution
can exist. We also see that the minimum wave speed is the spreading speed and
depends on D. The bigger D is, the bigger the wave speed is. This implies that
the movement of human will speed up the spread of the infection.

4. The full model

In this section, we will investigate the full model described by the system (2.1).
In terms of α and β, (2.1) can be written as

∂u

∂t
= Duxx + f1(u, v), x ∈ R, t > 0,

∂v

∂t
= dvxx + f2(u, v) x ∈ R, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ R,

(4.1)

where
f1(u, v) = αv(1− u)− (η + δ)u, f2(u, v) = βu(1− v)− µv.

We first study the spatial-independent steady states of the system. By solving

αv(1− u)− (η + δ)u = 0,

βu(1− v)− µv = 0,
(4.2)

we found two equilibria: disease-free equilibrium: E0 = (u0, v0) = (0, 0) and en-
demic equilibrium Ee = (ue, ve), where

ue =
αβ − µ(η + δ)
β(α+ η + δ)

, ve =
αβ − µ(η + δ)
α(β + µ)

,

which exists when αβ − µ(η + δ) > 0, i.e. R0 > 1.
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4.1. Stability as the steady states of corresponding spatially-independent
model. To investigate the stability of E0 and Ee as the steady states of corre-
sponding spatially-independent model, we let F(u, v) = (f1(u, v), f2(u, v))T . Then
by direct computations we found that the Jacobian matrix of (4.1) at E0 is

J0 = DF(E0) =
[
−(η + δ) α

β −µ

]
.

Its trace, Tr(J0), and determinant, det(J0), are

Tr(J0) = −(µ+ η + δ) < 0,

det(J0) = µ(η + δ)− αβ.

Thus, det(J0) < 0 if R0 > 1 and det(J0) > 0 if R0 < 1. Therefore, if R0 < 1, there
is no endemic equilibrium and the disease-free equilibrium is locally asymptotically
stable. If R0 > 1, the endemic equilibrium Ee exists and the disease-free equilibrium
is unstable (see [2]). The Jacobian matrix of (4.1) at Ee is

Je = DF(Ee) =

[
−β(α+η+δ)

β+µ
α(η+δ)(β+µ)
β(α+η+δ)

βµ(α+η+δ)
α(β+µ) −α(β+µ)

α+η+δ

]
.

Its trace, Tr(Je), and determinant, det(Je), are

Tr(Je) = −α(β + µ)2 + β(α+ η + δ)2

(α+ η + δ)(β + µ)
< 0,

det(Je) = αβ − µ(η + δ) > 0.

Therefore, Ee is locally asymptotically stable. In fact, we claim that
If R0 > 1, the distributions of human and mosquito populations are
spatially uniform (hence, (2.1) is reduced to a spatially-independent
model), and u(0) + v(0) > 0, then the endemic equilibrium Ee, as
a steady state of the corresponding spatially-independent model, is
globally stable in the first quadrant.

Indeed, it is easily seen that

∂f1

∂u
+
∂f2

∂v
= −αv − βu− (µ+ η + δ) < 0,

for u, v > 0. Thus, by Bendixson’s Criterion, there is no periodic solutions in
the first quadrant. We also know that 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. Therefore, the
Poincaré-Bendixson theorem implies the global stability of Ee in the first quadrant.

4.2. Stability as the steady states of (4.1). Next we will prove that the endemic
equilibrium Ee is a global attractor of (4.1) in the first quadrant by constructing
a family of contracting rectangles in the first quadrant. For the convenience of
explanations, we write the first equation in (4.2) as

u =
αv

αv + η + δ

and denote the curve in the u − v plane as C1 and write the second equation in
(4.2) as

v =
βu

βu+ µ
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and denote the curve in the u − v plane as C2. Then Ee = (ue, ve) is the unique
intersection point of C1 and C2 in the first quadrant. Now we use [28, Definition
14.18] to construct a family of contracting rectangles

Σk = {(u, v)| 0 < ak ≤ u ≤ bk, 0 < ck ≤ v ≤ dk}
as follows: the line segment u = ak, ck ≤ v ≤ dk is always to the left of C1; the
line segment u = bk, ck ≤ v ≤ dk is always to the right of C1; the line segment
v = ck, ak ≤ u ≤ bk is always below C2; the line segment v = dk, ak ≤ u ≤ bk is
always above C2, and as k →∞, the rectangles contract to Ee. Then we claim that

For any point p = (u, v) ∈ ∂Σk, F(p) · n(p) < 0, where ∂Σk is
the boundary of Σk, n(p) is the outward pointing normal at p and
F(p) = (f1(p), f2(p))T .

Indeed, on u = ak, ck ≤ v ≤ dk, n(p) = (−1, 0)T , u < αv
αv+η+δ . Therefore,

mathbfF (p) · n(p) = (αv + η + δ)u− αv < (αv + η + δ) · αv

αv + η + δ
− αv = 0.

On u = bk, ck ≤ v ≤ dk, n(p) = (1, 0)T , u > αv
αv+η+δ . Therefore,

F(p) · n(p) = αv − (αv + η + δ)u < αv − (αv + η + δ) · αv

αv + η + δ
= 0.

On v = ck, ak ≤ u ≤ bk , n(p) = (0,−1)T , v < βu
βu+µ . Therefore,

F(p) · n(p) = (βu+ µ)v − βu < (βu+ µ) · βu

βu+ µ
− βu = 0.

On v = dk, ak ≤ u ≤ bk, n(p) = (0, 1)T , v > βu
βu+µ . Therefore,

F(p) · n(p) = βu− (βu+ µ)v < βu− (βu+ µ) · βu

βu+ µ
= 0.

Thus we know that Σk is a family of contracting rectangles contracting to Ee and
Ee is a global attractor of (4.1) in the first quadrant.

4.3. Existence of travelling wave solutions. Next we will investigate the exis-
tence of traveling wave solutions. As usual, a traveling wave solution of (4.1) is a
solution of the form (u(t, x), v(t, x)) = (u(ξ), v(ξ)) with ξ = x − ct. c is called the
wave speed. We are looking for a traveling wave solution connecting the endemic
equilibrium and the disease-free equilibrium. That is, (u(ξ), v(ξ)) satisfies

lim
ξ→−∞

(u(ξ), v(ξ)) = (ue, ve), lim
ξ→∞

(u(ξ), v(ξ)) = (0, 0).

By substituting (u(ξ), v(ξ)) in (4.1), we have

Du′′ + cu′ + αv(1− u)− (η + δ)u = 0,

dv′′ + cv′ + βu(1− v)− µv = 0.

To prove the existence of traveling wave solutions, as in [15], we use [16, Theorem
4.2]. To do so, we need to verify the five conditions in this theorem. First we have

F(E0) = 0, and F(Ee) = 0.

It is easily seen that system given by (4.1) is cooperative in the sense that f1(u, v)
is non-decreasing with respect to v and f2(u, v) is non-decreasing with respect to
u.
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It is also true that F does not depend explicitly on x and t and the diffusion
coefficient matrix is a constant diagonal matrix.

F(p) is continuous and has uniformly bounded piecewise continuous first partial
derivatives for p = (u, v) satisfying 0 ≤ u ≤ ue, 0 ≤ v ≤ ve, and it is differentiable
at E0. The off-diagonal entries of J0 are nonnegative. When αβ − µ(η+ δ) > 0, J0

has a positive eigenvalue given by

λ1 =
−(µ+ η + δ) +

√
(µ+ η + δ)2 + 4[αβ − µ(η + δ)]

2
.

The eigenvector corresponding to λ1 is

V1 =
[
µ− (η + δ) +

√
[µ− (η + δ)]2 + 4αβ
2β

]
,

which has positive components.
Finally, all the diagonal entries of the diffusion coefficient matrix are positive.

Therefore, when αβ−µ(η+ δ) > 0, by [16, Theorem 4.2], there is a minimum wave
speed c∗ such that for every c ≥ c∗, system (4.1) has a traveling wave solution
(u(x− ct), v(x− ct)) which is non-increasing in x and for which (u(−∞), v(−∞)) =
Ee and (u(+∞), v(+∞)) = E0. Thus, as before, we know that only when the
endemic equilibrium Ee exists that a travelling wave solution can exist.

4.4. Analysis of spreading speed. Next we will investigate the relationship be-
tween the minimum wave speed and the spreading speed. It turns out this is much
more complicated than the single equation case. To do so, we first need to define
spreading speed in the case of a system of equations.

As in [15], we give the following reaction-diffusion system version of the definition
of spreading speed introduced in [31].

Definition 4.1. The spreading speed of (4.1) is defined as the positive number c∗

with the properties that for any initial functions (u0(x), v0(x)) which lies between
E0 and Ee and which coincides with E0 outside a bounded set, the corresponding
solution (u(t, x), v(t, x)) of (4.1) has the properties that for each positive ε > 0

lim
t→∞
{ sup
|x|≥(c∗+ε)t

‖(u(t, x), v(t, x))‖} = 0

and for any strictly positive constant vector w = (ω1, ω2) there is a positive Rw

with the property that if u0(x) ≥ ω1 > 0, v0(x) ≥ ω2 > 0 on an interval of length
2Rw, then the corresponding solution (u(t, x), v(t, x)) of (4.1) satisfies

lim
t→∞

{
sup

|x|≤(c∗−ε)t
‖(u(t, x)− ue, v(t, x)− ve)‖

}
= 0.

From [16, Theorem 4.2] we know that the aforementioned minimum wave speed
c∗ is the unique spreading speed of (4.1). To analyze the spreading speed c∗, we
need to introduce the concept of linearly determinacy (see [31, 15])

Definition 4.2. The spreading speed c̄ of the linearized system of (4.1) at E0

∂u

∂t
= Duxx − (η + δ)u+ αv, x ∈ R, t > 0,

∂v

∂t
= dvxx + βu− µv x ∈ R, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ R,
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is defined as the positive number c̄ with the properties that for any ε > 0,

lim
t→∞

{
sup

|x|≥(c̄+ε)t

‖(u(t, x), v(t, x))‖
}

= 0,

lim
t→∞

{
sup

|x|≤(c̄−ε)t
‖(u(t, x), v(t, x))‖

}
> 0.

When c∗ = c̄, the spreading speed of (4.1) is said to be linearly determined.

We claim that the spreading speed of (4.1) is linearly determined. To prove
this, we need to verify the conditions in [31, Theorem 4.2]. Indeed, since the five
conditions [16, Theorem 4.2] imply the [31, Hypotheses 4.1] and we have verified
these conditions, all we need to verify now is the following subtangential condition

F
(
ρ

[
u
v

])
≤ ρDF(E0)

[
u
v

]
. (4.3)

holds for all positive ρ. An easy calculation shows that (4.3) is true. Thus, c∗ = c̄.
Therefore, to calculate c∗, we only need to find c̄. c̄ is given by (see [31], [15])

c̄ = inf
ξ>0

λ1(ξ)

where λ1(ξ) is the largest eigenvalue of

A(ξ) =

[
ξD − η+δ

ξ
α
ξ

β
ξ ξd− µ

ξ

]
.

The two eigenvalues of A(ξ) are the solutions of quadratic equation

λ2 + pλ+ k = 0, (4.4)

where

p =
µ+ η + δ

ξ
− ξ(d+D),

k =
µ(η + δ)− αβ

ξ2
+ ξ2Dd− µD − d(η + δ).

A direct computations gives

λ1(ξ) =
−p+

√
Q

2
,

where
Q =

4αβ
ξ2

+ (
µ− η − δ

ξ
+ ξ(D − d))2.

It turns out that it is very difficult to find the infimum of λ1(ξ). Our main interest
is to investigate the dependence of the spreading speed on the diffusion rates using
some specific values of other parameters. To determine the values of the related
parameters, a lot of clinic research has been done. Due to the variety of populations,
regions, treatments, it seems many different specific values are possible as long as
they stay in a reasonable range. Here we take the parameter values from different
sources as cited. We take d = 8.838 × 10−3 (km2/day, [1]), a = 0.2 (day−1, [20]),
b = 0.5 ([1]), r = 0.5 ([27]), m = 2 ([27]), η = 0.05 (day−1, [27]), δ = 0.05 (day−1,
[1]), µ = 0.1 (day−1, [27]). Thus α = 0.2, β = 0.1. We assume that D = Kd with
K a positive number. Then

p =
0.2
ξ
− (1 +K)dξ,
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Table 1. K, Critical Point, and Spreading Speed

K 1 5 10 20 50 100
ξ0 2.16489 1.15804 0.831208 0.59164 0.375562 0.265875
c̄ 0.0382665 0.0681764 0.0934187 0.130022 0.203613 0.287027

Q =
0.08
ξ2

+ 7.811× 10−5(K − 1)2ξ2,

λ1(ξ) = 4.419× 10−3(1 +K)ξ − 0.1
ξ

+
0.5
ξ

√
0.08 + 7.811× 10−5(K − 1)2ξ4.

It is easily seen that
lim
ξ→0

λ1(ξ) = lim
ξ→∞

λ1(ξ) =∞.

With the help of Mathematica, we can see that for any positive K, λ1(ξ) has a
unique positive critical point ξ0. We take K = 1, 5, 10, 20, 50, 100 and list the
corresponding positive critical points and the minimum values of λ1(ξ). That is, c̄,
in Table 1.

From Table 1 we can see that, the critical point is a decreasing function of K
and the spreading speed is an increasing function of K. Therefore, we know that
the larger the diffusive coefficient of human is, the faster the disease spread. That
is, the movement of human will speed up the spread of the disease.

5. Numerical simulations

In this section, we will perform some numerical simulations to support some of
our theoretical results. To do so, first, we take the parameters as we did in the last
section. That is, we take d = 8.838 × 10−3 (km2/day, [1]), a = 0.2 (day−1, [20]),
b = 0.5 ([1]), r = 0.5 ([27]), m = 2 ([27]), η = 0.05 (day−1, [27]), δ = 0.05 (day−1,
[1]), µ = 0.1 (day−1, [27]). Thus α = 0.2, β = 0.1(day−1, [27]). For these values,

αβ − µ(η + δ) = 0.01 > 0.

Therefore, the endemic equilibrium Ee = (ue, ve) exists with

ue =
1
3
, ve =

1
4
.

Our results imply that, as a steady state of the corresponding spatially-independent
model, Ee is globally stable in the first quadrant. Figure 1 below is the graph of the
numerical solution with u(0) = 0.35 and v(0) = 0.05. From the graph we can see
that as t → ∞, (u(t), v(t)) → ( 1

3 ,
1
4 ) = (ue, ve). In fact, when we choose different

initial values, we have the same scenario. That is, Ee = (ue, ve) is globally stable.
Next we adjust the parameters. Recall that the meaning of b and r are mosquito-

to-human and human-to-mosquito transmission efficiency, respectively. Small val-
ues of b or r leads to small values of α or β. Without loss of generality, we assume
that α is decreased from 0.2 to 0.05 so that

αβ − µ(η + δ) = −0.05 < 0.

Thus the disease-free equilibrium E0 = (u0, v0) = (0, 0) is the only steady state
and our result shows that it is locally stable. Now we choose u(0) = 0.15 and
v(0) = 0.05 to find the numerical solution. Figure 2(a) below is the graph of the
solution. We can see that, as t→∞, (u(t), v(t))→ (0, 0) = (u0, v0).
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Figure 1. The graphs of of u(t) and v(t) with α = 0.2.

u(t)

v(t)

20 40 60 80 100
t

0.05

0.10

0.15

{u, v }

(a) u(0) = 0.15, v(0) = 0.05

u(t)

v(t)

20 40 60 80 100
t

0.2

0.4

0.6

0.8

1.0

{u, v }

(b) u(0) = 0.95, v(0) = 0.995

Figure 2. The graphs of of u(t) and v(t) with α = 0.05

In fact, our numerical results show that E0 is globally stable since the choice
of u(0) = 0.95 and v(0) = 0.995, as seen in Figure 2(b), tells us that, as t → ∞,
(u(t), v(t))→ (0, 0) = (u0, v0).

Next we consider the full model (4.1). We will use the same parameter values as
in the previous section, then we have that

f1(u, v) = 0.2v(1− u)− 0.1u, f2(u, v) = 0.1u(1− v)− 0.1v.

For these values of parameters, since αβ − µ(η + δ) = 0.01 > 0, our results showed
that Ee is a global attractor. As an example, we take D = 100d = 0.8838. Although
we are considering the initial value problem, to do simulations, we need to restrict
ourselves to a finite but large interval, say, x ∈ [−100, 100]. It is reasonable to
assume that, at the end points of this interval, u and v satisfy

u(t,−100) = u(t, 100) = v(t,−100) = v(t, 100) = 0.

For initial conditions, in order to be consistent with the homogeneous boundary
conditions, we take

u(0, x) = −0.00001x2 + 0.1, v(0, x) = −0.00002x2 + 0.2.

To see what happens as t → ∞, we will take snapshots of u(t, x) and v(t, x) with
t = 20, 60, 100, 140, 180 as shown in Figure 3. From the graphs we see that, as t
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becomes larger and larger, (u(t, x), v(t, x)) tends closer and closer to Ee = ( 1
3 ,

1
4 ).

This implies that Ee is a global attractor.
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v(t,x)

-100 -50 50 100
x

0.05

0.10

0.15

0.20

0.25

{u, v }

(a) t = 20
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-100 -50 50 100
x
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0.30
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(b) t = 60
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(c) t = 100
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(e) t = 180

Figure 3. The graphs of of u(t, x) and v(t, x) with α = 0.2

Conclusion. From our mathematical analysis of a model of malaria transmission,
we see that when the basic reproduction number is less than one, the disease-free
equilibrium is the only equilibrium and it is locally asymptotically stable and if
the reproduction number is greater than one, the disease-free equilibrium becomes
unstable and an endemic equilibrium emerges and it is asymptotically stable. We
also proved that, when the reproduction number is greater than one, there is a
minimum wave speed c∗ such that for every c ≥ c∗, there exists a travelling wave
solution with wave speed c and the minimum wave speed is also the spreading speed
of the disease. We also investigated the relationship between spreading speed and
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diffusion coefficients. Our results show that when the infected mosquito population
equilibrates much faster than the human population, the spreading speed of the
disease is proportional to the square root of the human diffusive coefficient. In
general situation, we only know that the movements of mosquito population and
human population will speed up the spread of the disease. Therefore, when malaria
breaks out in some regions, it is necessary to limit the movement of human being
to keep the spread of the disease under control. The exact relationship between the
spreading speed and the diffusion coefficients need to be further investigated.
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