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CRITICAL DIRICHLET PROBLEMS ON H DOMAINS
OF CARNOT GROUPS

GIOVANNI MOLICA BISCI, PATRIZIA PUCCI

Dedicated to the memory of our beloved friend Anna

Abstract. The paper deals with the existence of at least one (weak) solution
for a wide class of one-parameter subelliptic critical problems in unbounded

domains Ω of a Carnot group G, which present several difficulties, due to

the intrinsic lack of compactness. More precisely, when the real parameter is
sufficiently small, thanks to the celebrated symmetric criticality principle of

Palais, we are able to show the existence of at least one nontrivial solution.

The proof techniques are based on variational arguments and on a recent
compactness result, due to Balogh and Kristály in [2]. In contrast with a

persisting assumption in the current literature we do not require any longer
the strongly asymptotically contractive condition on the domain Ω. A direct

application of the main result in the meaningful subcase of the Heisenberg

group is also presented.

1. Introduction

This paper constitutes the initial part of a project devoted to the study of nonlin-
ear equations defined on possibly unbounded domains of Carnot groups. Differential
problems involving a subelliptic operator on an unbounded domain Ω of stratified
groups have been intensively studied in recent years by many authors, see, among
others, the papers of Garofalo and Lanconelli [16], Maad [23, 24], Schindler and
Tintarev [32], Tintarev [33] and references therein.

On the contrary, once a domain is not bounded the Folland-Stein spaceHW 1,2
0 (Ω)

maybe not be compactly embedded into a Lebesgue space. This lack of compactness
produces several difficulties exploiting variational methods. To recover compactness
on the unbounded case a persisting hypothesis in the above cited results was the
strongly asymptotically contractive condition on Ω, introduced by Maad, see [23]
for details. Indeed, every bounded domain is strongly asymptotically contractive.
In the Euclidean setting unbounded domains were covered in the pioneering paper
[12].

Now, we observe that a strongly asymptotically contractive domain Ω is geo-
metrically thin at infinity. In presence of symmetries, by replacing the contractive
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assumption on Ω with a geometrical hypothesis, see condition (H) below, intro-
duced recently by Balogh and Kristály in [2], we are able to treat here subelliptic
critical equations, in which the domain is possibly large at infinity.

The purpose of the present paper is to establish the existence of (weak) solutions
of the one-parameter problem

−∆Gu+ u = h(q)f(u) + λ|u|2
∗−2u in Ω,

u = 0 on ∂Ω.
(1.1)

More precisely, our strategy is to find a topological group T , acting continuously on
HW 1,2

0 (Ω), such that the T -invariant closed subspace HW 1,2
0,T (Ω) can be compactly

embedded in suitable Lebesgue spaces. Successively, assuming the left invariance
of the standard Haar measure µ of the Carnot group G, with respect to the action
of the group ∗ : T × HW 1,2

0 (Ω) → HW 1,2
0 (Ω), see Bourbaki [6, Chapter III §2

No 4] and Bourbaki [7, Chapter 7 §1 No 1], the principle of symmetric criticality
of Palais, see Lemma 3.5 below, can be applied to the associated energy Euler-
Lagrange functional Iλ, allowing a variational approach of problem (1.1).

Moreover, as usual, when dealing with critical equations, one of the main difficul-
ties appears since the Palais-Smale condition for the Euler-Lagrange functional Iλ
does not hold at any level, but just under a suitable threshold. Along this paper we
overcome these difficulties, using some strategies considered in the literature also in
context different than the one treated here, see, for instance, papers [5, 22, 28, 30].

Let us briefly introduce the structural setting of problem (1.1). Let G = (G, ◦)
be a Carnot group of step r and homogeneous dimension Q > 2, with neutral
element denoted by e. Let T = (T, ·) be a closed infinite topological group acting
continuously and left-distributively on G by the map ∗ : T ×G→ G. Assume that
T acts isometrically on the horizontal Folland-Stein space HW 1,2

0 (G), where the
action ] : T ×HW 1,2

0 (G)→ HW 1,2
0 (G) is defined for every (τ, u) ∈ T ×HW 1,2

0 (G)
by

(τ]u)(q) = u(τ−1 ∗ q) for all q ∈ G.
In what follows dCC : G×G → R+

0 denotes the Carnot-Carathéodory distance on
G, while µ is the natural Haar measure on G and “ lim inf ” is the Kuratowski lower
limit of sets.

Let Ω be a nonempty open T -invariant subset of G, with boundary ∂Ω, and
assume that

(H1) for every (qk)k ⊂ G such that

lim
k→∞

dCC(e, qk) =∞ and µ
(

lim inf
k→∞

(qk ◦ Ω)
)
> 0,

where qk◦Ω = {qk◦q : q ∈ Ω}, then there exist a subsequence (qkj )j of (qk)k
and a sequence of subgroups (Tqkj )j of T , with cardinality card(Tqkj ) =∞,
having the property that for all τ1, τ2 ∈ Tqkj , with τ1 6= τ2, it results

lim
j→∞

inf
q∈G

dCC((τ1 ∗ qkj ) ◦ q, (τ2 ∗ qkj ) ◦ q) =∞.

A domain Ω of G, for which condition (H1) holds, is simply called H domain.
In (1.1) the subelliptic Laplacian operator ∆G on G is the second-order differential

operator

∆G =
m1∑
k=1

X2
k ,
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where B = {X1, . . . , Xm1} is a basis of the first graduated component G1 of the
stratified Lie algebra G = ⊕rk=1Gk associated to G; see Section 2.

The critical Sobolev exponent 2∗ in the Carnot group G is 2∗ = 2Q/(Q−2). The
parameter λ is a real number. The nonlinearity f : R→ R is a continuous function,
with associated primitive

F (t) =
∫ t

0

f(ξ)dξ for every t ∈ R,

and satisfies
(H2) F > 0 in R \ {0}, and there exist C > 0 and s ∈ (1, 2) such that

|f(t)| ≤ C|t|s−1 for all t ∈ R;

(H3) there exist a0 > 0, δ > 0 and s1 ∈ (1, 2) such that

F (t) ≥ a0|t|s1 for all t ∈ R, with |t| ≤ δ.

Since Q > 2, by [18] we know that for all ϕ ∈ C∞0 (Ω)

‖ϕ‖2∗ ≤ CQ,2‖DGϕ‖2, (1.2)

where CQ,2 is a positive constant depending on the dimension Q and

DG = (X1, . . . , Xm1)

denotes the horizontal gradient.
Concerning the function h in (1.1), we assume that h satisfies

(H4) 0 ≤ h ∈ L
2∗

2∗−s (Ω) and there exists a nonempty open set Ω0 ⊂ Ω such that

inf
q∈Ω0

h(q) > 0.

Clearly, condition (H4) simply requires that h be nontrivial and belong to a suitable
Lebesgue space. Finally, suppose that

(H5) the functional Ψ : HW 1,2
0 (Ω)→ R given by

Ψ(u) =
∫

Ω

h(q)f(u)dµ(q) for all u ∈ HW 1,2
0 (Ω)

is T -invariant, that is Ψ(τ]u) = Ψ(u) for all (τ, u) ∈ T ×HW 1,2
0 (G).

In Section 2 we present the useful criterion Lemma 2.5 on the validity of assumption
(H5). We are now able to state the main existence result for (1.1).

Theorem 1.1. Let Ω be a H domain of G. Assume that f and h fulfil (H2)–(H5).
Then (1.1) admits at least one nontrivial solution uλ in the Folland-Stein space
HW 1,2

0 (Ω) for all λ ≤ 0. Furthermore, if λ > 0 and h satisfies

‖h‖ 2∗
2∗−s

<
1
C

( 1

C
(2−s)Q+2s
Q,2

(2α

Q

)2−s)1/2

, (1.3)

where C and s are introduced in (H2), CQ,2 > 0 in (1.2), and

α =
2∗(6− s)− 8

(2∗ − 2)(2− s)
,

then there exists λ∗ > 0 such that problem (1.1) admits at least one nontrivial
solution uλ in HW 1,2

0 (Ω) for all λ ∈ (0, λ∗).
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Figure 1. A simple prototype of Ωψ

Thanks to [2, Theorem 1.1] and Lemma 2.5 below, a direct application of Theo-
rem 1.1 gives the existence of at least one solution for subelliptic equations defined
on a special class of (unbounded) domains of the Heisenberg group Hn = Cn × R,
n ≥ 1. More precisely, let ψ1, ψ2 : R+

0 → R, R+
0 = [0,∞), be two functions that

are bounded on bounded sets, with ψ1(t) < ψ2(t) for every t ∈ R+
0 . Define

Ωψ =
{
q ∈ Hn : q = (z, t) with ψ1(|z|) < t < ψ2(|z|)

}
,

where |z| =
√∑n

i=1 |zi|2; see Figure 1.
Then the subelliptic problem (1.1) becomes

−∆Hnu+ u = h(q)f(u) + λ|u|2
∗−2u in Ωψ

u = 0 on ∂Ωψ,
(1.4)

where ∆Hn the subelliptic Kohn-Laplace operator.
Let U(n) = U(n)× {1}, where

U(n) = U(n,C) =
{
τ ∈ GL(n; C) : 〈τz, τz′〉Cn = 〈z, z′〉Cn for all z, z′ ∈ Cn

}
,

that is U(n) is the usual unitary group. Here 〈·, ·〉Cn denotes the standard Hermitian
product on Cn, in other words 〈z, z′〉Cn =

∑n
k=1 zk · z′k.

Hence, U(n) is the unitary group endowed with the natural multiplication law
· : U(n) × U(n) → U(n), which acts continuously and left-distributively on Hn by
the map ∗ : U(n)×Hn → Hn, defined by

τ̂ ∗ q = (τz, t) for all τ̂ = (τ, 1) ∈ U(n) and all q = (z, t) ∈ Hn,

thanks to [2, Lemma 3.1]. Taking T = U(n), then Ωψ is U(n)-invariant and a H
domain, as shown in the proof of Theorem 1.1 of [2]. Moreover,

HW 1,2
0,U(n)(Ωψ) = {u ∈ HW 1,2

0 (Ωψ) : u(z, t) = u(|z|, t) for all q = (z, t) ∈ Ωψ},
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that is HW 1,2
0,U(n)(Ωψ) = HW 1,2

cyl (Ωψ) is the space of cylindrically symmetric func-

tions of HW 1,2
0 (Ωψ).

Finally, U(n) acts isometrically on the horizontal Folland-Stein spaceHW 1,2
0 (Hn),

where the action ] : U(n) ×HW 1,2
0 (Hn) → HW 1,2

0 (Hn) is defined for every (τ̂ , u)
in U(n)×HW 1,2

0 (Hn) by

(τ̂ ]u)(q) = u(τ−1z, t) for all q = (z, t) ∈ Hn,

in view of [2, Lemma 3.2] A special case of Theorem 1.1 reads as follows.

Corollary 1.2. Let Ωψ be defined as above. Assume that f and h fulfil (H2)–(H4),
and h is cylindrically symmetric, that is h(q) = h(z, t) = h(|z|, t) for every q =
(z, t) ∈ Ωψ. Then (1.1) admits at least one nontrivial solution uλ in HW 1,2

0,U(n)(Ωψ)
for all λ ≤ 0.

Furthermore, if λ > 0 and h satisfies also (1.3), then there exists λ∗ > 0 such
that problem (1.1) admits at least one nontrivial solution uλ in HW 1,2

0,U(n)(Ωψ) for
all λ ∈ (0, λ∗).

If the functions ψ1 and ψ2 are bounded, the domain Ωψ is strongly asymptotically
contractive and the whole space HW 1,2

0 (Ωψ) is compactly embedded in Lν(Ωψ) for
every ν ∈ (2, 2∗). We refer to [2, 24] for further details. In such a case Corollary 1.2
follows by using the embedding result proved by Garofalo and Lanconelli in [16].
See also Schindler and Tintarev [32].

On the Heisenberg setting, a Rubik-cube technique, see [2], applied to subgroups
of U(n) and suitable variational arguments allow us to obtain further multiplicity
results that will be presented in the forthcoming paper [27].

The manuscript is organized as follows. In Section 2 we present the notations
and recall some properties of the functional solution space of (1.1). In particular,
in order to apply critical point methods to problem (1.1), we need to exploit some
analytic properties of the closed subspace HW 1,2

0,T (Ωψ), introduced above. Then, in
the same section, we give the key Lemmas 2.1 and 2.3 which are particularly useful
for the proof of Theorem 1.1. Finally, in Section 3 we describe the geometrical profile
of the underlying functional in Lemmas 3.1 and 3.2 and we prove the existence result
stated in Theorem 1.1.

For general references on the subject and on methods treated along the paper we
refer to the monographs [4, 21] as well as [11, 25, 26, 36] and the references therein.

2. Notation and preliminaries

In this section we briefly recall some basic facts on Carnot groups and the func-
tional Folland-Stein space HW 1,2

0 (Ω). A Carnot group G = (G, ◦) is a connected,
simply connected, nilpotent Lie group, whose Lie algebra G admits a stratification,
i.e.

G = ⊕rk=1Gk,

where the integer r is called the step of G, while Gk is the linear subspace of finite
dimension mk of G for every k ∈ {1, . . . , r}, and

[G1,Gk] = Gk+1 for all k, with 1 ≤ k < r − 1 and [G1,Gr] = {O}.
In this context the symbol [G1,Gk] denotes the subalgebra of G generated by the
commutators [X,Y ], where X ∈ G1 and Y ∈ Gk, and where the last bracket denotes
the Lie bracket of vector fields, that is [X,Y ] = XY − Y X.
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The left translation by q ∈ G on G is given by `q(p) = q ◦ p for every p ∈ G. Let
Γ(TG) be the space of global sections of the tangent bundle TG on G. A vector
field X ∈ Γ(TG) is left invariant if for every q ∈ G one has

X(ϕ ◦ `q) = (Xϕ) ◦ `q,

for any ϕ ∈ C∞(G) and p ∈ G.
The Lie algebra G associated to G is the Lie algebra of left invariant vector fields

X on G. Moreover, G is canonically isomorphic to the tangent space TeG.
Let

m =
r∑

k=1

mk

be the topological dimension of the Carnot group G.
The exponential map expG : G→ G is given by expG(X) = γX(1), where γX is

the unique integral curve associated to the left invariant vector field X such that
γX(0) = e. In other words, the curve γX is the unique solution of the Cauchy
problem

γ̇X(t) = X(γX(t)), γX(0) = e. (2.1)

The curve γX is defined for any t ∈ R, that is left invariant vector fields are complete.
Indeed, γX(t + s) = γX(s) γX(t) by (2.1). Therefore, γX can be extended in the
entire R.

Since G is nilpotent, connected and simply connected Lie group, the exponential
map expG is a smooth diffeomorphism from G onto G.

Let 〈·, ·〉0 be a fixed inner product on the first graduated component G1 of G, with
associated orthonormal basis B = {X1, X2, . . . , Xm1}. From now on, we consider
the extension of the inner product 〈·, ·〉0 to the whole tangent bundle TG by group
translation. The corresponding norm is denoted by ‖ · ‖0. A left invariant vector
field X ∈ G is said to be horizontal if

X(q) ∈ span{X1(q), . . . , Xm1(q)}

for every q ∈ G. Indeed, G1 is considered to be the horizontal direction, while the
remaining layers G2, · · · ,Gr are viewed as the vertical directions. In particular,
the last layer Gr is the center of the Lie algebra and the horizontal direction G1

generates in the sense of Lie algebras the whole G. More precisely,

Gk = [G1, [G1, [G1, . . . [G1,G1] · · · ]]]︸ ︷︷ ︸
k times

for all k = 2, · · · , r.
Since the map expG is bijective, for every element q ∈ G there exists a unique

vector field X =
∑m1
k=1 xkXk +

∑m
k=m1+1 xkX

′
k ∈ G such that

q = expG(X) = expG

( m1∑
k=1

xkXk +
m∑

k=m1+1

xkX
′
k

)
,

where {Xm1+1, . . . , Xm} are non-horizontal vector fields that extend B to an or-
thonormal basis B∗ of G.

Now, observe that G ∼= Rm. Then, there exists a smooth map % such that the
following diagram is commutative
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Rm G = ⊕rk=1Gk

G

π−1

% expG

where π−1 is the inverse of the canonical projection π : G→ Rm such that

Rm 3 (x1, . . . , xm1 , . . . , xm) X =
∑m1
k=1 xkXk +

∑m
k=m1+1 xkX

′
k ∈ G

q ∈ G

π−1

%
expG

Thus, we often identify every element q ∈ G with its exponential coordinates
(x1, . . . , xm1 , xm1+1, . . . , xm) ∈ Rm respect to the basis B∗ in G.

More precisely, it is possible to identify the Carnot group (G, ◦) with (Rm, ?),
where the expression of the group operation ? is given by

x ? y = %−1(%(x) ◦ %(y)) for all x, y ∈ Rm

and is explicitly determined by the Baker-Campbell-Hausdorff formula.
Whenever we are in presence of a stratification, it is possible to define a one-

parameter group {∆η}η>0 of dilatations of the algebra. More precisely, for a fixed
real number η > 0 and all X ∈ Gk, we set ∆η(X) = ηkX and extend the map
∆η to the whole G by linearity. Furthermore, the family {∆η}η>0 induces a family
{δη}η>0 of the group automorphisms on G by the exponential map such that the
following diagram is commutative

G G = ⊕rk=1Gk

G G = ⊕rk=1Gk

exp−1
G

expG

δη ∆η

that is
δη(q) = expG(∆η(exp−1

G (q)))
for every q ∈ G.

The homogeneous dimension Q of G, attached to the automorphisms {δη}η>0,
is defined by

Q =
r∑

k=1

k dim Gk = m1 + 2m2 + · · ·+ rmr.

In particular, the above definition of Q and the fact that {δη}η>0 is a family of
automorphisms on G imply that the Jacobian determinant of the dilation δη is
constant in q and given by ηQ.

Moreover, let µ denote the push-forward of the m-dimensional Lebesgue measure
Lm on G via the exponential map. Then, dµ defines a biinvariant Haar measure on
G and

dµ(q ◦ δη) = ηQdµ(q).
Since G can be identified with (Rm, ?) by using the exponential map, if E ⊂ G is
a measurable subset, its Haar measure is explicitly given by µ(E) = Lm(ρ−1(E)).
Therefore, the same notation will be used for both measures.
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Take q1, q2 ∈ G and let HΓq1,q2(G) be the set of piecewise smooth curves γ, such
that γ : [0, 1]→ G, γ̇(t) ∈ G1 a.e. t ∈ [0, 1], (γ(0), γ(1)) = (q1, q2) and∫ 1

0

‖γ̇(t)‖0dt <∞.

Since HΓq1,q2(G) 6= ∅ by the celebrated Chow-Rashevskĭı theorem in [10], it is
possible to define the Carnot-Carathéodory distance on G, as follows

dCC(q1, q2) = inf
γ∈HΓq1,q2 (G)

∫ 1

0

‖γ̇(t)‖0dt.

The metric dCC is left invariant on G and for every η > 0 it results

dCC(δη(q1), δη(q2)) = η dCC(q1, q2),

for every q1, q2 ∈ G.
The Euclidean distance to the origin | · | on G induces a homogeneous pseudo-

norm | · |G on G and (via the exponential map) one on the group G. Indeed, for
X ∈ G, with X =

∑r
k=1Xk, where Xk ∈ Gk, define a pseudo-norm on G as follows

|X|G =
( r∑
k=1

|Xk|2r!/k
)2r!

.

The induced pseudo-norm on G has the form

|q|G = | exp−1
G (q)|G for all q ∈ G.

The function | · |G is usually known as the non-isotropic gauge. It defines a
pseudo-distance on G given by

d(p, q) = |p−1 ◦ q|G for all p, q ∈ G,

that is equivalent to the Carnot-Carathéodory distance dCC on G.
Thus, Carnot groups are endowed with the intrinsic Carnot-Carathéodory ge-

ometry. The adjective intrinsic is meant to emphasize a privileged role played by
the horizontal layer and by group translations and dilations. It is worth stressing
that the Carnot-Carathéodory geometry is not Riemannian at any scale. In fact,
Carnot groups can be seen as a particular case of more general structures, the
so-called sub-Riemannian spaces.

The most basic second-order partial differential operator in a Carnot group G is
the sub-Laplacian, or equivalently the horizontal Laplacian in G, given by

∆G =
m1∑
k=1

X2
k .

We shall denote by DG = (X1, . . . , Xm1) the related horizontal gradient and set
‖DGu‖0 =

(∑m1
k=1(Xku)2

)1/2.
Obviously, Euclidean spaces are commutative Carnot groups, and, more pre-

cisely, the only commutative Carnot groups. The simplest example of Carnot
group of step two is provided by the Heisenberg group Hn of topological dimension
m = 2n+ 1 and homogeneous dimension Q = 2n+ 2, that is the Lie group whose
underlying manifold is R2n+1, endowed with the non-Abelian group law

q ◦ q′ =
(
z + z′, t+ t′ + 2

n∑
i=1

(yix′i − xiy′i)
)
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for all q, q′ ∈ Hn, with

q = (z, t) = (x1, . . . , xn, y1, . . . , yn, t), q′ = (z′, t′) = (x′1, . . . , x
′
n, y
′
1, . . . , y

′
n, t
′).

The vector fields for j = 1, . . . , n

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
,

∂

∂t
, (2.2)

constitute a basis B∗ for the real Lie algebra H = G of left invariant vector fields
on Hn. The basis B∗ satisfies the Heisenberg canonical commutation relations for
position and momentum [Xj , Yk] = −4δjk∂/∂t, all other commutators being zero.

If u ∈ C2(Hn), then the horizontal Laplacian in Hn of u, called the Kohn-Spencer
Laplacian, is defined as follows

∆Hnu =
n∑
j=1

(X2
j + Y 2

j )u

=
n∑
j=1

( ∂2

∂x2
j

+
∂2

∂y2
j

+ 4yj
∂2

∂xj∂t
− 4xj

∂2

∂yj∂t

)
u+ 4|z|2 ∂

2u

∂t2
,

and ∆Hn is hypoelliptic according to the celebrated Theorem 1.1 due to Hörmander
in [19].

Turning back to (1.1), we need to introduce the suitable solution space. Let
Ω be a nontrivial open subset of G. The Folland-Stein horizontal Sobolev space
HW 1,2

0 (Ω) is the completition of C∞0 (Ω), with respect to the Hilbertian norm

‖u‖ =
(∫

Ω

‖DGu‖20dµ(q) +
∫

Ω

|u|2dµ(q)
)1/2

,

〈u, ϕ〉 =
∫

Ω

〈DGu,DGϕ〉0 dµ(q) +
∫

Ω

uϕdµ(q).
(2.3)

Of course, if Ω = G, then HW 1,2(G) = HW 1,2
0 (G), where HW 1,2(G) denotes

the horizontal Sobolev space of the functions u ∈ L2(G) such that DGu exists in
the sense of distributions and ‖DGu‖0 is in L2(G), endowed with the Hilbertian
norm (2.3).

In particular, the embedding

HW 1,2
0 (Ω) ↪→ Lν(Ω) (2.4)

is continuous for any ν ∈ [2, 2∗]; see Folland and Stein [15]. Furthermore, by
[17, 20, 35] we know that, if O is a bounded open set of G, the embedding

HW 1,2
0 (O) ↪→↪→ Lν(O) (2.5)

is compact for all ν, with 1 ≤ ν < 2∗.
Let (G, ◦) be a Carnot group, and (T, ·) be a closed topological group, with

neutral element . The group T is said to act continuously on G, if there exists a
map ∗ : T ×G→ G such that the following conditions

(H6) j ∗ q = q for every q ∈ G;
(H7) τ1 ∗ (τ2 ∗ q) = (τ1 · τ2) ∗ q for every τ1, τ2 ∈ T and q ∈ G

hold. In addition, the action ∗ is left distributed if
(H8) τ ∗ (p ◦ q) = (τ ∗ p) ◦ (τ ∗ q) for every τ ∈ T and p, q ∈ G.
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A set Ω ⊂ G is T -invariant, with respect to ∗, if T ∗ Ω = Ω.
We assume that T induces an action ] : T × HW 1,2

0 (G) → HW 1,2
0 (G), defined

for every (τ, u) ∈ T ×HW 1,2
0 (G) by

(τ]u)(q) = u(τ−1 ∗ q) for all q ∈ G. (2.6)

The group T acts isometrically on HW 1,2
0 (Ω) if

‖τ]u‖ = ‖u‖ for all (τ, u) ∈ T ×HW 1,2
0 (G). (2.7)

Let
HW 1,2

0,T (Ω) = {u ∈ HW 1,2
0 (Ω) : τ]u = u for all τ ∈ T}

be the T -invariant subspace of HW 1,2
0 (Ω). Clearly, HW 1,2

0,T (Ω) is closed, since the
action ] of T on HW 1,2

0 (Ω) is continuous by (H6) and (H7).
The following compactness result is due to Balog and Kristály and given in [2,

Theorem 3.1].

Lemma 2.1. Let G = (G, ◦) be a Carnot group of step r and homogeneous di-
mension Q > 2, with neutral element denoted by e. Let T = (T, ·) be a closed
infinite topological group acting continuously and left distributively on G by the
map ∗ : T ×G→ G. Assume furthermore that T acts isometrically on HW 1,2

0 (G),
where the action ] : T × HW 1,2

0 (G) → HW 1,2
0 (G) is defined in (2.6). Let Ω be

a nonempty T -invariant open subset of G, satisfying condition (H1). Then the
embedding

HW 1,2
0,T (Ω) ↪→↪→ Lν(Ω)

is compact for every ν ∈ (2, 2∗).

Remark 2.2. By (2.4) the embeddings

HW 1,2
0,T (Ω) ↪→ Lν(Ω)

are continuous for every ν ∈ [2, 2∗]. In particular, there exists a constant Cν such
that

‖u‖ν ≤ Cν‖u‖ for all u ∈ HW 1,p
0,T (Ω), (2.8)

where Cν depends on ν and Q.

We also notice that inequality (1.2) yields

‖u‖2∗ ≤ CQ,2‖DHnu‖2 (2.9)

for all u ∈ HW 1,2
0,T (Ω).

Lemma 2.3. Let (uk)k be in HW 1,2
0,T (Ω), such that uk ⇀ u weakly in HW 1,2

0,T (Ω),
and uk → u a.e. in Ω. Then

lim
k→∞

∫
Ω

|uk − u|2
∗
dµ(q) = lim

k→∞

∫
Ω

|uk|2
∗
dµ(q)−

∫
Ω

|u|2
∗
dµ(q),

lim
k→∞

∫
Ω

|u|2
∗−2u(uk − u)dµ(q) = 0,

lim
k→∞

∫
Ω

|uk|2
∗−2ukudµ(q) =

∫
Ω

|u|2
∗
dµ(q).

(2.10)
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Proof. The first part of (2.10) is just the celebrated Brezis-Lieb lemma in [8].
For the second part of (2.10), it is enough to observe that uk ⇀ u in L2∗(Ω)
by Lemma 2.1 and that ϕ 7→

∫
Ω
|u|2∗−2uϕdµ(q) is a linear continuous functional on

L2∗(Ω). While the third limit is a consequence of [1, Proposition A.8]. �

A function u ∈ HW 1,2
0 (Ω) is said to be a (weak) solution of problem (1.1) if

〈u, ϕ〉 =
∫

Ω

h(q)f(u)ϕdµ(q) + λ

∫
Ω

|u|2
∗−2uϕdµ(q) (2.11)

for any ϕ ∈ HW 1,2
0 (Ω).

Problem (1.1) has a variational nature and the Euler-Lagrange functional Iλ
associated to (1.1) is

Iλ(u) =
1
2
‖u‖2 −

∫
Ω

h(q)F (u)dµ(q)− λ

2∗

∫
Ω

|u|2
∗
dµ(q).

Clearly, the functional Iλ is well-defined in HW 1,2
0 (Ω) and, thanks to (H2) and

(H4), it is of class C1(HW 1,2
0 (Ω)). Moreover, for every u ∈ HW 1,2

0 (Ω)

〈I ′λ(u), ϕ〉 = 〈u, ϕ〉 −
∫

Ω

h(q)f(u)ϕdµ(q)− λ
∫

Ω

|u|2
∗−2uϕdµ(q) (2.12)

for all ϕ ∈ HW 1,2
0 (Ω). Hence, the critical points of Iλ in HW 1,2

0 (Ω) are exactly the
(weak) solutions of (1.1).

Let u ∈ HW 1,2
0,T (Ω) be a solution of problem (1.1) only in the HW 1,2

0,T (Ω) sense,
that is

〈u, ϕ〉 =
∫

Ω

h(q)f(u)ϕdµ(q) + λ

∫
Ω

|u|2
∗−2uϕdµ(q) (2.13)

for any ϕ ∈ HW 1,2
0,T (Ω). Then, u ∈ HW 1,2

0,T (Ω) is a solution of (1.1) in the whole
space HW 1,2

0 (Ω), that is in sense of definition (2.11), if the principle of symmetric
criticality of Palais given in [29] holds. To prove this let us recall the well known
principle of symmetric criticality of Palais stated in the general form proved in [13]
for reflexive strictly convex Banach spaces. For details and comments we refer to
[9, Section 5].

More precisely, let X = (X, ‖ · ‖X) be a reflexive strictly convex Banach space.
Suppose that G is a subgroup of isometries g : X → X, that is g is linear and
‖gu‖X = ‖u‖X for all u ∈ X. Consider the G-invariant closed subspace of X,

ΣG = {u ∈ X : gu = u for all g ∈ G}.

By [13, Proposition 3.1] we have

Lemma 2.4. Let X, G and Σ be as before and let I be a C1 functional defined on
X such that I ◦ g = I for all g ∈ G. Then u ∈ ΣG is a critical point of I if and only
if u is a critical point of J = I|ΣG .

From now on we assume that T satisfies the main structural conditions of The-
orem 1.1 and that Ω is a nonempty open subset of G, which is T -invariant. We
apply the principle of symmetric criticality to the Sobolev space HW 1,2

0,T (Ω) under
the action ] : T ×HW 1,2

0 (G)→ HW 1,2
0 (G) defined in (2.6). Clearly,

‖τ]u‖ = ‖u‖ for all (τ, u) ∈ T ×HW 1,2
0 (Ω), (2.14)
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since T acts isometrically on HW 1,2
0 (Ω) by assumption. Moreover, the functional

Ψ : HW 1,2
0 (Ω) → R is T -invariant by assumption (H5). Thus, Iλ is T -invariant in

HW 1,2
0 (Ω).

Hence, the principle of symmetric criticality of Palais ensures that u ∈ HW 1,2
0,T (Ω)

is a solution of problem (1.1) if and only if u is a critical point of the functional
Jλ : HW 1,2

0,T (Ω)→ R, where Jλ = Iλ|HW 1,2
0,T (Ω).

We end the section by an essential lemma which shows when the key assumption
(H5) is satisfied. To this aim, we need to introduce some facts well known in
abstract group measure theory.

Lemma 2.5. Suppose that the action ∗ of the group T on the Carnot group G
satisfies conditions (H6)–(H8). Assume furthermore that the natural Haar measure
µ, defined on G, is left ∗ invariant, that is for all measurable subset E of G and
for all τ ∈ T

µ(τ ∗ E) = µ(E),

where τ ∗ E = {τ ∗ q : q ∈ E}.
If h is T -invariant, that is h(τ ∗q) = h(q) for all τ ∈ T and q ∈ G, and f : R→ R

is a continuous function, then (H5) holds.

Proof. Fix τ ∈ T and u ∈ HW 1,2
0 (Ω). Then, putting τ−1 ∗ q = p, we get by

(H6)–(H8)

Ψ(τ]u) =
∫

Ω

h(q)f((τ]u)(q))dµ(q) =
∫

Ω

h(q)f(u(τ−1 ∗ q))dµ(q)

=
∫
τ∗Ω

h(τ ∗ p)f(u(p))dµ(τ ∗ p)

=
∫

Ω

h(p)f(u(p))dµ(p) = Ψ(u),

since Ω and h are T -invariant by assumption, and the left ∗ invariance of the
measure µ implies

dµ(τ ∗ p) = dµ(p) for all p ∈ G,
which is exactly [7, formula (10)], being 1 the multiplier of µ. See also [3, Chapter
4].

This shows that Ψ is T -invariant, that is Ψ satisfies (H5), and concludes the
proof. �

3. Proof of Theorem 1.1

In this section we suppose that the assumptions of Theorem 1.1 are satisfied,
without further mentioning. Thus, problem (1.1) has a variational structure and,
as explained in Section 2, it is enough to study the critical points of the functional
Jλ : HW 1,2

0,T (Ω)→ R, defined by

Jλ(u) =
1
2
‖u‖2 −

∫
Ω

h(q)F (u)dµ(q)− λ

2∗

∫
Ω

|u|2
∗
dµ(q) (3.1)

for all u ∈ HW 1,2
0,T (Ω). We first show that Jλ has a useful geometrical profile, and

recall that, when λ > 0, we require also (1.3) on h.
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Lemma 3.1. For any parameter λ ≤ 1 there exist positive numbers ρ0 and j such
that Jλ(u) ≥ j for any u ∈ HW 1,2

0,T (Ω), with ‖u‖ = ρ0, and for any function h of
the type stated in Theorem 1.1. Moreover,

mλ = inf
u∈Bρ0

Jλ(u) < 0,

where Bρ0 = {u ∈ HW 1,2
0,T (Ω) : ‖u‖ < ρ0}, and there exist a sequence (uk)k in Bρ0

and a function uλ in Bρ0 such that for all k,

‖uk‖ < ρ0, mλ ≤ Jλ(uk) ≤ mλ +
1
k
,

uk ⇀ uλ in HW 1,2
0,T (Ω), uk → uλ a.e. in Ω,

J ′λ(uk)→ 0 in [HW 1,2
0,T (Ω)]′.

(3.2)

Proof. Fix λ ≤ 1. By (H2), Lemma 2.1 and (2.9) we obtain

Jλ(u) ≥ 1
2
‖u‖2 − C

∫
Ω

h(q)|u|sdµ(q)− λ

2∗
‖u‖2

∗

2∗

≥ 1
2
‖u‖2 − CCsQ,2‖h‖ 2∗

2∗−s
‖u‖s − λ+

2∗
C2∗

Q,2‖u‖2
∗
,

(3.3)

for all u ∈ HW 1,2
0,T (Ω). Therefore, if λ ≤ 0, for ρ0 > 0 sufficiently large we have

Jλ(u) ≥ ρs0
[1

2
ρ2−s

0 − CCsQ,2‖h‖ 2∗
2∗−s

]
=  > 0

for all u ∈ HW 1,2
0,T (Ω), with ‖u‖ = ρ0, since 1 < s < 2.

In λ ∈ (0, 1], then the Young inequality yields for any ε > 0

CCsQ,2‖h‖ 2∗
2∗−s
‖u‖s ≤ ε‖u‖2 + ε−

s
2−s

(
CCsQ,2‖h‖ 2∗

2∗−s

) 2
2−s

,

being 1 < s < 2. Thus, for ε = 1/4 it follows that

Jλ(u) ≥ 1
4
‖u‖2 −

(
2sCCsQ,2‖h‖ 2∗

2∗−s

)2/(2−s)
−
C2∗

Q,2

2∗
‖u‖2

∗
,

since 0 < λ ≤ 1. Let us consider the function

η(t) =
1
4
t2 −

C2∗

Q,2

2∗
t2
∗
, t ≥ 0.

Now the number ρ0 = (2CQ,2)
1

2−2∗ > 0 is such that

η(ρ0) = max
t≥0

η(t) =
1
2

(1
2
− 1

2∗
)(

2C2∗

Q,2

)2/(2−2∗)
> 0

because 2 < 2∗. Therefore, for any function h, satisfying (1.3), and for any u in
HW 1,2

0,T (Ω), with ‖u‖ = ρ0, we obtain

Jλ(u) ≥ η(ρ0)−
(

2sCCsQ,2‖h‖ 2∗
2∗−s

)2/(2−s)
= j > 0,

which concludes the proof of the first part.
Let q0 ∈ Ω0 and R > 0 be so small that B ⊂ Ω0, where B = B(q0, 2R) is the

open ball of center q0 and radius R and Ω0 is given in (H4). Choose ϕ ∈ C∞0 (B)
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such that 0 ≤ ϕ ≤ 1, with ‖ϕ‖ ≤ ρ0, and
∫
B
ϕs1dµ(q) > 0. Let δ > 0 be the

number given in (H3). For all t ∈ (0, δ), then (H3) and (H4) yield

Jλ(tϕ) ≤ 1
2
‖tϕ‖2 −

∫
Ω

h(q)F (tϕ)dµ(q)− λ t
2∗

2∗

∫
Ω

ϕ2∗dµ(q)

≤ t2

2
‖ϕ‖2 −

∫
Ω

h(q)F (tϕ)dµ(q) + λ−
t2
∗

2∗

∫
B

ϕ2∗dµ(q)

≤ t2

2
ρ2

0 − ts1a0 inf
q∈Ω0

h(q)
∫
B

ϕs1dµ(q) + λ−
t2
∗

2∗

∫
B

ϕ2∗dµ(q).

Hence, Jλ(tϕ) < 0 for for t ∈ (0, δ) sufficiently small, since 1 < s1 < 2 < 2∗ by
(H3). This shows that mλ < 0 and completes the proof.

Applying the Ekeland variational principle in Bρ0 and the first part of the lemma,
there exists a sequence (uk)k in Bρ0 such that

mλ ≤ Jλ(uk) ≤ mλ +
1
k
, Jλ(u) ≥ Jλ(uk)− 1

k
‖u− uk‖

for all u ∈ Bρ0 . A standard procedure gives that J ′λ(uk) → 0 in [HW 1,2
0,T (Ω)]′

as k → ∞ and, up to a subsequence, the bounded sequence (uk)k ⊂ Bρ0 weakly
converges to some uλ ∈ Bρ0 and uk → uλ a.e. in Ω. This completes the proof
of (3.2) and of the lemma. �

Clearly, (3.2) of Lemma 3.1 implies that the bounded sequence (uk)k is a Palais-
Smale sequence of Jλ in HW 1,2

0,T (Ω) at level mλ.

Lemma 3.2. There exists λ∗ ∈ (0, 1] such that, up to a subsequence, (uk)k strongly
converges to some uλ in HW 1,2

0,T (Ω) for all λ < λ∗.

Proof. Fix λ ≤ 1. By (3.2) of Lemma 3.1, in addition to (2.9) and Lemma 2.3,
passing up to a further subsequence, if necessary, (uk)k and uλ ∈ Bρ0 satisfy (3.2)
and

uk ⇀ uλ in HW 1,2
0,T (Ω), ‖uk‖ → κλ,

DGuk ⇀ DGu in L2(Ω,Rm1),

uk → uλ in Lν(Ω), uk → uλ a.e. in Ω, ‖uk − uλ‖2
∗

2∗ → cλ,

|uk|2
∗−2uk ⇀ |uλ|2

∗−2uλ in L2∗/(2∗−1)(Ω),

(3.4)

where κλ and cλ are nonnegative numbers, and ν ∈ (2, 2∗). We claim that∫
Ω

h(q)|uk − uλ|sdµ(q)→ 0. (3.5)

Since h ∈ L
2∗

2∗−s (Ω) and (uk)k is bounded in HW 1,2
0,T (Ω), by (1.2) for any ε > 0

there exists a measurable set E ⊂ Ω such that∫
Ω\E

h(q)|uk − uλ|sdµ(q)

≤
(∫

Ω\E
|h(q)|2

∗/(2∗−s)dµ(q)
)(2∗−s)/2∗

‖uk − uλ‖22∗ ≤
ε

2
.

Furthermore, for any measurable subset U ⊂ E, by the Hölder inequality∫
U

h(q)|uk − uλ|sdµ(q) ≤ c
(∫

U

|h(q)|2
∗/(2∗−s)dµ(q)

)(2∗−s)/2∗

,
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where c = supk ‖uk − uλ‖22∗ . Hence, {h(q)|uk − uλ|s}k is equi-integrable and uni-
formly bounded in L1(E), thanks to (H4). Thus by (3.4) and the Vitali convergence
theorem, for all ε > 0 there exists k0 > 0 such that∫

E

h(q)|uk − uλ|sdµ(q) ≤ ε

2
for all k ≥ k0. Therefore,∫

Ω

h(q)|uk − uλ|sdµ(q) ≤
∫

Ω\E
h(q)|uk − uλ|sdµ(q) +

∫
E

h(q)|uk − uλ|sdµ(q) ≤ ε

for all k ≥ k0. This proves the claim and (3.5).
Now (H2) and the Hölder inequality give∣∣ ∫

Ω

h(q)f(uk)(uk − uλ)dµ(q)
∣∣ ≤ C ∫

Ω

h(q)|uk|s−1|uk − uλ|dµ(q)

≤ C̃
(∫

Ω

h(q)|uk − uλ|sdµ(q)
)1/s

,

for a suitable constant C̃ > 0. Thus, by (3.5) it follows that

lim
k→∞

∫
Ω

h(q)f(uk)(uk − uλ)dµ(q) = 0. (3.6)

Similarly, by using again (H4) and (H2) we have as k →∞∫
Ω

h(q)f(uk)ϕdµ(q)→
∫

Ω

h(q)f(uλ)ϕdµ(q), (3.7)

for any ϕ ∈ HW 1,2
0,T (Ω).

By (3.2), (3.4)–(3.7) we see that uλ is a solution of (1.1), that is uλ is a critical
point of Jλ in HW 1,2

0,T (Ω). In particular, as k →∞

o(1) = 〈J ′λ(uk)− J ′λ(uλ), uk − uλ〉 = (κ2
λ − ‖uλ‖2)− ‖uk‖2

∗

2∗ + ‖uλ‖2
∗

2∗ + o(1).

Consequently, by (3.4) and the Brézis-Lieb lemma [8] we get the main formula

lim
k→∞

‖uk − uλ‖2 = λ lim
k→∞

‖uk − uλ‖2
∗

2∗ = λ cλ. (3.8)

Let us first consider the case λ ≤ 0. Then, (3.8) gives at once that ‖uk−uλ‖ = o(1)
as k →∞, that is (uk)k strongly converges to uλ in HW 1,2

0,T (Ω), as stated.
Let us now consider the case λ ∈ (0, 1]. By using (2.9), with u = uk−uλ, we get

λ cλ ≥ C2∗

Q,2c
2/2∗

λ (3.9)

for all λ ∈ (0, 1]. Let us define

λ∗ =

{
inf{λ ∈ (0, 1] : cλ > 0}, if there exists λ ∈ (0, 1] such that cλ > 0,
1, if cλ = 0 for all λ ∈ (0, 1].

We claim that λ∗ > 0 if there exists λ > 0 such that cλ > 0. Otherwise, there exists
a sequence (λk)k, with cλk > 0, such that λk → 0 as k → ∞. Thus, (3.9) implies
that

λkc
1−2/2∗

λk
≥ C2∗

Q,2 > 0.
This is an obvious contradiction since {cλ}λ∈(0,1] is uniformly bounded above
by (2.9). Indeed, (uk)k ⊂ Bρ0 , uλ ∈ Bρ0 and ρ0, given in Lemma 3.1, is inde-
pendent of λ.
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Hence, cλ = 0 for any λ ∈ (0, λ∗). Therefore, for all λ ∈ (0, λ∗),

lim
k→∞

‖uk − uλ‖2∗ = 0.

Now (3.8) implies
lim
k→∞

‖uk − uλ‖ = 0.

In conclusion, uk → uλ as k →∞ in HW 1,2
0,T (Ω) for all λ < λ∗, as stated. �

Proof of Theorem 1.1. Let Jλ be the restriction of the energy functional Iλ to the
subspace HW 1,2

0,T (Ω). For any λ ≤ 1 Lemma 3.1 and the Ekeland variational prin-
ciple give the existence of a Palais-Smale sequence (uk)k in HW 1,2

0,T (Ω) of Jλ at
level mλ < 0. Moreover, by Lemma 3.2 there exists λ∗ > 0 such that, up to a
subsequence, (uk)k strongly converges to some uλ in HW 1,2

0,T (Ω) for all λ < λ∗.
Furthermore, mλ = Jλ(uλ) < 0 and J ′λ(uλ) = 0 for all λ < λ∗. Consequently, the
function uλ ∈ HW 1,2

0,T (Ω) is a nontrivial critical point of the functional Jλ. Now, as
observed in Section 2, since the action ] : T×HW 1,2

0 (Ω)→ HW 1,2
0 (Ω) given in (2.6)

is supposed to be isometric, the functional Iλ is T -invariant by assumption (H5).
Hence, the principle of symmetric criticality of Palais, recalled in (2.4), implies
that uλ ∈ HW 1,2

0,T (Ω) is a nontrivial critical point also for Iλ in HW 1,2
0 (Ω), that is

a nontrivial solution for (1.1) in the sense of definition (2.11). This completes the
proof. �
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