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p-LAPLACIAN IN PHENOMENOLOGICAL MODELING OF
FLOW IN POROUS MEDIA AND CFD SIMULATIONS

PETR GIRG, LUKAS KOTRLA, ANEZKA SVANDOVA

ABSTRACT. The aim of this article is to discuss several aspects of connections
between the p-Laplacian and mathematical models in hydrology. At first we
present models of groundwater flow in phreatic aquifers and models of irriga-
tion and drainage that lead to quasilinear parabolic equations involving the
p-Laplacian. Next, we survey conditions of validity of Strong Maximum Prin-
ciple and Strong Comparison Principle for this type of problems. Finally, we
employ computer fluid dynamics simulations to realistic scenario of fracture
networks to estimate values of the parameters of constitutive laws governing
groundwater flow in the context of fractured hard-rock aquifers.

1. INTRODUCTION

The aim of this article is to discuss several aspects of connections between the
p-Laplacian and mathematical models of groundwater flow with applications to
irrigation, drainage, and fresh water supply in small rural areas. The operator
p-Laplacian, a non-linear generalization of the Laplace operator,

us div (|[VulP7?Vu), p>1, p#2,

gained substantial attention of mathematicians working in nonlinear functional
analysis since the 1970s. This can be attributed mostly to the fact that the p-
Laplacian exhibits many features of more general nonlinear operators, while being
simple and elegant, and hence allowing the ideas of the proofs to be kept clear and
accessible. However, origins of the p-Laplacian can be traced back to the 1870s,
see, e.g., [54] 55, [61], when the radially symmetric version of this operator (written
in a different way than it is customary today) was used in the theoretical study of
groundwater flow towards a well in coarse grained porous media (such as gravels).
To the best of our knowledge, the p-Laplacian in its full PDE form was first intro-
duced in the paper [34] in the context of mathematical models of the flow of natural
gas in the porous rock as early as in 1945. In particular, the following equation
(written in modern notation)

u” (%, t)%(x, t) = cApu(x,t),
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where ¢ > 0, k = 1/2, p=3/2, x € R3, and t € (0, +00), was proposed as a model
of isothermic process of turbulent filtration of natural gas in a porous medium in
[34]. This equation was soon after suggested in a more general setting as a model of
polytropic process of turbulent filtration of natural gas with k = v/(vy + 1), where
~ is the polytropic index of the process and p € [3/2,2], see [35, p. 504]. In the
early papers on the subject, authors (without the benefit of techniques of modern
functional analysis) limited themselves to study particular cases of initial-boundary
value problems with the p-Laplacian which were important for engineers of that
days, with breakthrough results in [4,[5]. More information about pioneering works
related to applications of the p-Laplacian to flow in porous media can be found in
[11].

In this article, we cover two topics connecting the p-Laplacian and mathematical
models in hydrology. The first topic is related to mathematical models in irrigation
and drainage and concerns validity of Strong Maximum Principle (SMP) and Strong
Comparison Principle (SCP) for initial-value problem

%b(u(x7 t)) — cApu(x,t) = f(x,t) >0 for (x,t) € 2 x (0,T);

u(x,0) = ug(x) >0 for x € € (1.1)
u(x,t) =0 for (x,t) € 00 x (0,T),
u(x,t) >0 for (x,t) € A x[0,7T],

where Q@ € RN, N € N, is a bounded domain, ¢ = const. > 0, b: Ry — R, :=
[0,4+00) is a continuous function, b(0) = 0, and b € C*(0,+00) with ¥’ > 0 in
(0,+00), f € C(Q x (0,T)) and ug € C() are nonnegative functions. For a de-
tailed discussion about mathematical models used in irrigation and drainage based
on , see Section 2. Explicit solutions of problem can be obtained only
in rare special cases. Thus we rely on qualitative analysis and numerical methods
in dealing with . Maximum and comparison principles play important role
in this process. In this paper, we discuss conditions under which these principles
for hold and provide some realistic examples when they do not hold. This is
not interesting only from theoretical point of view, but it has implications for the
choices of appropriate numerical methods to find numerical solutions of .

The second topic delves into the utilization of computer fluid dynamics (CFD)
numerical simulations to estimate values of the parameters of constitutive laws
governing groundwater flow in the context of fractured hard rock. This research
builds upon existing research, see, e.g., [I5 @7, 57, [60, [63], and is motivated by
the fact that increasing demand for fresh water has driven interest in hard-rock
aquifers [24, [50], despite their limited well yields due to water flow occurring only
in cracks and fractures. With hard-rocks covering over 20% of the Earth’s landmass
[3, 311 [24], these aquifers hold significant freshwater reserves, particularly in semi-
arid regions like sub-Saharan Africa [38, 59], Australia [22] and India [44] [53]. They
provide important water sources for rural populations in these areas, particularly
in Australia and India, which store 40% and 50% of their groundwater in such
aquifers, respectively. Understanding flow dynamics in these aquifers is essential
for improving rural living standards through better access to fresh water.

This article is organized as follows. In Section [2] we present several mathemat-
ical models of groundwater flow in phreatic aquifers and related models used in
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irrigation and drainage. In Section [3] we survey some of our recent results concern-
ing SMP and SCP. In Section [4] we present some of our recent results concerning
estimations of parameters in constitutive laws governing groundwater flow through
fractured hard rocks. Section [5] is devoted to contribution of P. Drébek to topics
related to the p-Laplacian. This paper adheres to the SI system for all physical
quantities (m for length, s for time, kg for mass, etc.).

2. MATHEMATICAL MODELS

In mathematical models of groundwater flow, averaged velocity, total head, and
piezometric head are crucial concepts. Actual velocity of the groundwater highly
oscillates in the channels in the porous medium and thus it is difficult to mea-
sure and predict. Averaged velocity ¥,, captures the idea of bulk motion of the
groundwater within a sufficiently large control volume in the porous medium. It is
defined by means of specific discharge ¢ by formula @, = §/¢esr, where the specific
discharge (vector) ¢ takes the direction of the flow and its magnitude is defined
as the volume of water flowing per unit time through a unit cross-sectional area
normal to the direction of flow, and ¢.g is effective porosity of the medium see,
e.g., [0, p. 121] for detailed explanation. On this macroscopic level, the process
of transformation and dissipation of energy can be described in the following way.
The total mechanical energy per volume E7 in a control volume of water is the sum
of gravitational potential energy zpg, pressure energy P, and kinetic energy %Qvfw
(all three per volume), where v,, stands for the magnitude of averaged velocity of
the flow in the control volume, ¢ is the water density, P pressure, z elevation of
the control volume from the datum, g gravitational acceleration, see, e.g., [49]. For
incompressible liquid such as water, one can equivalently consider another quantity

2

Er z+ + v
09 o9 29 ™
which can be directly measured in practice, e.g., by using observation wells or by so
called piezometers, see, e.g., [7, p. 63] or [49, pp. 129-132]. Groundwater is loosing
its total energy (or equivalently total head hr) while flowing due to viscous forces
and friction with porous medium. Thus, its total energy decreases in the direction
of the flow. In typical real-world situations, the term corresponding to kinetic
energy is negligible and can be dropped, see, e.g., [25] p. 5] or [49, pp. 40-43]. In
this way, we obtain piezometric head

hr =

h=z+ r
o9
which is the state variable in the mathematical models of the water flow in the
underground. On the other hand, the specific discharge is the flux quantity. The
constitutive law relating this two quantities, quantitatively describes the rate of
dissipation of the energy along the flow path.

In this paper, we will limit ourselves to a mathematical model of unconfined
aquifer bounded below by a flat impermeable layer at z = 0. This constitutes a free
boundary problem in its full generality, since the upper boundary is the unknown
surface of the groundwater. In groundwater modelling, this difficulty is simplified by
assuming that the vertical flux in the aquifer is negligible, leading to piezometric
head h being constant in the z-direction. This assumption is known as Dupuit-
Forchheimer assumption, see, e.g., [7,[8[9] and it is based on observations performed
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on aquifers. Then the height T of the free surface of the groundwater (called water

table for short) above the point (z,y,0) at time ¢ is h(z,y,t) = h(z,y,0,t). The
balance equation can be written as follows

oh A . R
¢eﬂ”a($7 Y, t) —div (h (-’137 Y, t) q (LL', Y, t)) = g(m‘7 Y, t) , (21)

see, e.g., [8, Eq. (5.4.43)], [9 Eq. 2.6]. Here, g(x,y,t) represents external sinks
and sources (evaporation, rainfall etc.) of volume of water per area and time unit.
Recall that ¢e is effective porosity of the porous medium and §(z,y,t) is specific
discharge.

To eliminate the flux variable from the balance equation , suitable consti-
tutive law is needed. It is obtained empirically from experimental data for given
porous medium and fluid. In practice, these experiments are performed on a sample
of porous medium subjected to one dimensional flow for several values of magnitudes
of flux ¢, which are kept constant during each measurement. Linear Darcy’s law is
the most widely used in practice due to its simplicity and still reasonable accuracy.
It relates groundwater flux to the piezometric head loss per length according to the
following formula

__Ah

qg==c AL’
where ¢ > 0 is a constant to be determined from measured data, Ah is the difference
of the piezometric heads measured at two distinct locations distance AL apart.
This formula was established experimentally for filtration of water through sand by
Henry Darcy [19] in 1856. Later, it was found that it has limited range of its validity
in coarse grained media (such as gravels), see, e.g., [20] 26}, B0, [41], 54], 55] as well as in
media with very low permeability (such as clays, certain soils, and sandstones), see,
e.g., [I7, 28, [64]. For thorough surveys and discussions of this and other constitutive
laws and various criteria of their validity, see, e.g., [1} [7, 48] [49, 56]. It follows from
discussions in these papers that the power-type law

q= c(%)m (2.3)

with constants ¢, m > 0 to be determined from measured data, is simple but flexible
enough to fit with most experimental data obtained for various porous media. For
m = 1, the power-type law coincides with Darcy’s law. The case m > 1 correponds
to natural media such as clays, certain soils and sandstones, while the case 1/2 <
m < 1 corresponds to coarse grained materials such as gravels, see the literature
listed above. Let us note that the law is not the only type of nonlinear laws
used in practice. For thorough surveys, see, e.g., [1l 1] [7, [48] [49].

For the homogeneous and isotropic porous medium, the two- or three-dimensional
constitutive law in differential form can be inferred from the one-dimensional one,
by taking into account that the flux takes the opposite direction of the gradient of
the piezometric head and no flow occurs if the gradient of the piezometric head is
zero. In this way, we obtain

. Jo for Vh =10,
T=) —¢ V™ Vi for VA £0,

(2.2)

(2.4)

where Vh stands for the spatial gradient of the piezometric head, ¢,m > 0 are

constants as in (2.3)).
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By substituting two-dimensional differential version of Darcy’s law, i.e., (2.4)
with m =1 for ¢ in (2.1)), we obtain classical porous medium equation

ey — ediv(hVR) = gy, ).

By the same process, we obtain the nonlinear equation
a/ﬁ . Tim—1v1 ~
Genr'5y — cdiv(R|VAI" VR = 5, p,1), (2.5)

by using with m >0, m # 1.

Now we turn our attention to mathematical models from irrigation and drainage.
We were motivated by models proposed in [46], but we take into account nonlinear
effects and use the power-type law instead of Darcy’s law .

At first, let us consider local aquifer under a field, represented by a bounded
domain Q C R2?, surrounded by open water body as in Figure 1. The horizon-
tal permeable layer is bounded from below by the horizontal impermeable layer
(bedrock). The drainage channels are fully penetrating, i.e., they reach the surface
of the impermeable bedrock. We take the bedrock surface as vertical datum, i.e., we
assign to it coordinate z = 0. Let H > 0 be the depth of the open water bodies rel-
ative to the datum. Then the height % of the water table above the datum satisfies
balance equation with boundary conditions h = H on 09. Using substitution
p =m+ 1 (to match notation with the p-Laplacian), u = hp/(=1) HP/(P=1) e
obtain initial-boundary value problem with

p p—1 _p_ %
b(w) :qbeﬂ(pil) [(u+Hp—1) —H], (2.6)
flx,t) = (%)pilﬁ(x, t), and ug(x) = ﬁg/(p_l)(x) — HP/=Y where x = (z,y) €
Q.

The second model covered by our theoretical methods concerns local phreatic
aquifer under a strip field between two parallel ditches. The aquifer is bounded
from below by an impermeable bedrock and the ditches are fully penetrating to
the bedrock, see Figure In general, the domain would be infinite strip in this
situation. However, if we assume translation invariance of the solution along the
parallel ditches, we can limit ourselves to a bounded interval Q = (—L/2,L/2),
where L > 0, see Figure 2. This nonlinear model has been proposed in [9] and it is
motivated by [6, B9, 51 52], where linear Darcy’s law is used instead. With h
being piezometric head and the bedrock vertical datum, the function u = Bp/(p=1)
HP/(P=1) satisfies with b, f,up as above but with x =2 € Q = (-L/2,L/2).

3. MAXIMUM AND COMPARISON PRINCIPLES

We will address the question of validity of SMP for a nonnegative weak solution
to

%b(u(x, 1)) — Apu(x,t) = f(x,t) for (x,t) € Qx (0,T);

u(x,0) = ug(x) for x € Q;
u(x,t) =0 for (x,t) € 9Q x (0,7),
which is (1.1)) with ¢ = 1 for simplicity. The reader is referred, e.g., to [9] for
the precise definition of weak solution and the appropriate function spaces. Recall
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(a)

Free Water Body Surface

Impermeable Bedrock

FIGURE 1. Fields (brown) drained by a grid of ditches (blue). (a)
Topographical view. Domain {2 represents a field surrounded by a
free water body. (b) 3D detail of a field surrounded by free water
body accumulated in ditches.

that we assume the following hypotheses: b : R, — R, is a continuous function,
b(0) =0, and b € C1(0, +00) with ¥’ > 0 in (0, +00). For simplicity, we assume that
both, f: Q2 x (0,7) = R and ug : @ — R, are continuous and nonnegative. Then
indeed, u > 0 on Q x (0,T) by Weak Comparison Principle (WCP) [9], Proposition
1, p. 28].

In the modelling of groundwater flow, the way the water spreads from the source
area (where rain or irrigation occurs) is crucial question. In particular, we are
interested in the following scenario. The initial distribution of water ug € C () is
such that ug > 0 on some compact subset of 2. Considering diffusion process, one
would expect that the groundwater immediately spreads toward the boundary 0.
Indeed, the solution to linear diffusion equation satisfies the following SMP.
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(a)

I 1 Impermeable
J Q=(-L/2, L/2) L Bedrock

FIGURE 2. Fields (brown) drained by parallel ditches (blue). (a)
Topographical view. (b) 2D detail of a field between two ditches.

Definition 3.1 (Strong maximum principle). Let f > 0 on Q x (0,7) and u €
C (2 x[0,7)) be a corresponding nonnegative weak solution to (L.I)). We say that
u satisfies SMP if there exists 7 € (0,T") such that u(x,¢) > 0 for all (x,t) € 2x(0, 1)
and u(x,t) =0 for all (x,¢) € Q x [r,T).

In the nonlinear case p # 2 and/or b(s) Z s, the situation is not so clear-cut at
all. The validity of SMP depends on p and properties of b(s) as s — 0+. At first,
we recall famous Barenblatt’s self-similar solution of Leibenson’s equation obtained

in [4].
Example 3.2 (Barenblatt’s self-similar solution). Let N € N, k,p > 1 be given
constants. Existence of self-similar radially symmetric solution of Leibenson’s equa-
tion

oul /k

ot

was established in [4]. In particular, it was shown using ODE techniques that the
following radially symmetric problem

=A,u in RY x (0, +00),

Sl = &J in (0, +00) x (0, +00) ,
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possesses self-similar solution, i.e., solution of the form
_N r
U}(T’ t) =t B BN,k,p (tl/B) )

where 8 = B(N,k,p) > 0, which satisfies f0+oo w(r,t)rN=1dr = 1 for any ¢t > 0.
Then, for a self-similar radially symmetric solution of Leibenson’s equation, it holds
u(x,t) = w(|x|,t) for x € RY and t > 0. Moreover, it easily follows that the initial
trace of u is the Dirac measure in R¥ concentrated at 0, i.e., lim;_ o4 u(-,t) — o
in the sense of measures in RY.

Three qualitatively different cases need to be distinguished here.

(i) If k(p — 1) > 1, then
By kp(s) = {max {O,C — KSP%I}F’

where v = (N, k,p) >0, k = k(N, k,p) >0, C = C(N,k,p) > 0.
(ii) If k(p—1) =1, then 8 = p and

By kp(s) = Cexp ( - (%)F) ,

where C' = C(N, k,p) > 0.
(i) If 0 < k(p — 1) < 1, then

By kp(s) = (C + nsp%l)

where v = (N, k,p) > 0, k = k(N, k,p) >0, C = C(N,k,p) > 0.
It can be easlily seen that the self-similar solution w has compact support supp w =
[O,t% (%)pT] in the case (i), while w(r,t) > 0 for any r > 0,¢ > 0, in the cases (ii)
and (iii). This makes the case (i) qualitatively distinct from the other two cases.
Now we turn our eyes back to . Let k,p> 1, k(p— 1) > 1, b(s) = s'/*, and
xo € Q be arbitrary but fixed. Let also 0 < o < %(H/C)ﬂ(pfl)/pdist(xo,8Q)ﬁ be
fixed. Then the function

~

u(x,t) = w(|x — x|, ¢t + 0)

is a solution to with f(x,t) = 0 and ug(x) = w(|x — xg|, o) for all x € Q and
0<t< %(K/C)’B(p_l)/p dist(xo, 9Q2)”. Taking into account that ug > 0 and it is
positive on a set of positive measure, this means that SMP does not hold for
for this choice of parameters and function b. This motivated our research in [10} [12]
to obtain sufficient conditions for the validity of SMP as well as discovery of further
counterexamples for SCP.

Indeed, we obtained the following affirmative result for the SMP, see [10] for
more details and the proof.

Proposition 3.3 ([I0, Thm 1.1.]). Let 1 < p < 2,N > 1 and assume that b :
Ry — Ry is as above in (1.1)) and satisfies
27pb/

m S0 (3.1)

s—0+ | log s|P~1
Finally, assume that u : Q x [0,T) — Ry is a continuous, nonnegative, weak
solution to (L.1). Then, for any fized to € (0,T), the solution wu (-, ty) is either
positive everywhere on ) or else identically zero on €.
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In particular, if u(€,0) = ug(§) > 0 for some & € Q, then there exists 7 € (0,T]
such that u(x,t) > 0 for all (x,t) € Q x (0,7), i.e., Strong Mazimum Principle
is valid in the (N + 1)-dimensional space-time cylinder Q x (0,7). The number
7€ (0,T) can be estimated from below by

T =sup{T’ € (0,T] : u(&,t) >0 for all t € [0,T")} > 0.

Note that b is given by in our models. Hence, o'(s) > k = const. for all s > 0
and the validity of SMP depends on value of p only. The following counterexample is
slightly modified [12] Example 2.3, pp. 368-369], where the comparison of stationary
solution u and evolutionary solution v to with b(s) = s is studied in one space
dimension. To obtain a counterexample to SMP, we will compare evolutionary
solution with the trivial one.

Example 3.4 (Counterexample to SMP for p > 2 in 1D). Let p > 2, max{2,p/(p—
2)} < fand 0 < v < . Assume also that &'(s) > k = const. > 0. In accordance
with [12], define

u(z,t) =u(z) =0 and
o for z € (—1,0],
v(z,t) = {tmﬁ(l_gﬂ) for z € (0,1).

Clearly, u(£1,t) = v(£1,t) = 0, v(x,0) = u(z,0) = 0, u(x,t) = v(x,t) = 0 on
(—1,0) x (0,T), and 0 = u(x,t) < v(x,t) on (0,1) x (0,T).
Our goal is to show that there exists to > 0 such that

f( )defb/( )(9’0 g( ’p 28U)>0 on (071)X(O,t0)-

ot Oz or

Indeed,
v 2 v
f@.t) = kE_iOax’p ax)
= ke [(1—a") — (p— 1P — Dk Pl D)2
B+ 4|P72 B+7)(B+~—1)
x \1 -5 (1 - Iv)} .
! B(B—1) 1/
-1 v

<(ﬂ+~y)(ﬂ+7— 1)) <z <,

then

B+yB+y-1)
(1— B(5—1) x7)<0
which together with (1 —27) > 0 ensures that f(x,t) > 0. On the other hand, if
BB-1) 1
S CE A

we have (1 —z7) > k; = const. and, hence, we may find ¢, small enough such that

(=27 = (p— ) (B — D 1a P DD 2
B+ P2 B+MNB+y-1)
x’l— 3 z7 (1— BB=1) x”)}>0.
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Recall that the constants 5 and 7 are chosen such that (8 —1)(p—2) —2 > 0. This
concludes the counterexample to SMP.

The counterexample above provides the existence of a nonnegative weak solution
with compact support [0, 1] for sufficiently small times. Let us observe that the solu-
tion in our counterexample is qualitatively different from the Barenblatt’s solution,
since its compact support stays constant for sufficiently small times. Moreover,
positive bump of our solution is induced by suitable nontrivial nonnegative right-
hand side of the equation rather than by the initial condition, which is identically
zero in our counterexample.

In [12], we studied counterexamples to SCP with weak solutions v and v that are
positive in (—1,1) such that the only point satisfying u'(x) = v’(z) = 0 being x = 0.
Thus z = 0 was the only point of degeneracy of the diffusive part driven by the
p-Laplacian with p > 2. Such degeneracy causes that a perturbation from one side
of the point of degeneracy x = 0 does not spread through this point immediately in
general, but some waiting time is needed. This result from [I2] is adopted to
in the following proposition.

Proposition 3.5. Let 2 < p < oo, max{2,p/(p—2)} <a<f,vy=pF—a (>0),
b'(s) > k = const. for all s >0, and set
u(z,t) =ulx) =1—|z|* together with
def O [ 0u p—20u
o) -5 (1% %)
both for x € (—1,1). Furthermore, let
hz(xvt) = f(.]?) + ‘m|6wz(xat) fO’f’ (.If,t) € (_17 1) X (O7T)a 1= 1a2a
where ¥; € L™= ((—=1,1) x (0,T)) satisfy
(i) 0 <ty < oho < 22]P(1 — |2|Y + Ct) with some constant C' > 0; and
(ii) 1 Z 9 on (=1,1) x (0,7) for any T € (0,T).
Let w;(x,t) (i =1,2) be the weak solutions to

D) D ((Dusjp=2 00 ) for ) € (+1,1) x (07

ot ox
wi(£1,t) =0 forte (0,T); (3.2)
wi(x,0) =up(z) forz e (-1,1)
which satisfy w; € C ([-1,1] x [0,T]). If the constant C > 0 is sufficiently small,
there exists tg > 0 such that
wy(z,t) <ws(x,t)  for (z,t) € (—1,1) x (0,tp),
wy Zwe  on (—1,1) x (0,tp), (3.3)
but w1(0,t) = wa(0,t)  for all t € (0,p).
Finally, if 11 = o = 0 on (—1,0) x (0,tg), then we have also w; = ws = u on
(=1,0] x (0,tp) and wy # wa on (0,1) x (0,t).

The proof follows the same steps as [12], Proof of Theorem 2.4, pp. 369-370].
Define

=(p—1DaP Ha—1)[z|@DE-2Fa=2

(x,t) = u(z) +t\x|ﬂ (1—|z|”) for (z,¢t) € (—-1,1) x (0,T),

. O 0 7,00 ,p—200
gty = v @) — 5 (152 5.

ox
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Since V' (s) > k for all s > 0,

=)=V - 5« 2505

ka@ 0 ( |p 2811)4_2( |p 23u>

ot Oz ox ox ox

and we obtain by similar calculation as in [I12], Example 2.3, pp. 368-369] that there
exists tg € (0,T) such that

§la,t) — fo(z) > %|x\5<1 — |z + %t) for (z,£) € (=1,1) x (0,t0) ,
provided C' > 0 is chosen small enough. We refer reader to [9, Proposition 1, p. 28]
for the Weak Comparison Principle (WCP) applicable to problems with b(s) # s.
This ends the outline of the proof.

Results presented in this section demonstrate that the validity of SMP for quasi-
linear parabolic problems is a complex issue. The relevance of SMP gains impor-
tance in connection with the fact that explicit forms of solutions to problem
can be found only in very exceptional cases and we are limited to the use of nu-
merical methods. While SMP might not hold in general, classical methods such
as implicit Euler or Crank-Nicholson methods remain reasonable effective when it
is known to be valid. However, for solutions with compact support, specialized
numerical methods are needed to mitigate unwanted numerical dispersion at the
boundary of the compact supports and avoid oscillations of the numerical solution,
see, e.g., |2, 13, [16] 23 27, 36, 43]. Our further research on the validity of SMP
aims to provide criteria for selecting accurate and efficient numerical methods for
a given problem based on SMP validity or presence of compact support solutions.

4. PARAMETER ESTIMATION AND CFD SIMULATIONS OF EXPERIMENTS

Understanding and managing groundwater flow in fractured hard-rock aquifers
are crucial for a variety of purposes, including sustainable water access in rural areas
and dewatering construction projects like tunnels, see, e.g., [24] B3] [50]. However,
accurately estimating parameters in constitutive laws for these aquifers presents
significant challenges compared to traditional porous media. These parameters are
usually obtained by fitting formulas such as, e.g., or on data obtained
by series of laboratory experiments performed on samples of given porous medium,
see, e.g., [7,[19] 28]. This process is suitable for porous media encompassing uncon-
solidated materials like soils, sands, and gravels, or permeable rocks like sandstones.
In the context of fractured hard rock, however, this approach encounters significant
limitations. Hard rocks have extremely low permeability and the groundwater flow
occurs almost exclusively within the network of fractures. It may occur that the
network of fractures can have a low density of significant fractures, making it diffi-
cult to obtain representative samples for traditional laboratory experiments. Such
experiments would require large, sometimes even multi-cubic meter rock samples to
ensure enough fractures are captured, necessitating careful extraction techniques to
minimize damage to the natural fracture network. This poses significant logistical
and cost limitations. For fracture systems, a common approach is to conduct phys-
ical experiments or numerical simulations on a single fracture or a small number
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of intersecting fractures, allowing the influence of fracture intersections to mani-
fest within the constitutive relationships. This strategy has been adopted in nu-
merous studies across experimental, theoretical, and numerical domains, see, e.g.,
114, 15, 18, [32, 45, &7, [57, 60, 63].

While laboratory experiments remain valuable, approach based on computer
fluid dynamics (CFD) simulations of physical experiments offers a potentially cheaper
and more accessible alternative. By simulating the flow in several intersecting frac-
tures, we aim to estimate the parameters. To obtain as realistic outputs as possible,
we created 2D and 3D geometrical models, see Fig. [}l and [6] of several intersect-
ing fractures found on easy accessible granite rock exposures in abandoned and
partially flooded quarry Spic by Neéin, Czech Republic, see Fig.

FIGURE 3. Granite rock exposures in abandoned quarry Spic by
Necin, Czech Republic.

Using these geometrical models, see [58], we simulated physical experiments to
obtain datasets suitable for parameter estimation by numerical solving the station-
ary incompressible Navier-Stokes equation together with the continuity equation

VAT +T-Vi=—VP (4.1)
V.5=0 (4.2)

in the fracture network represented by the domain Qpop C R2 (Fig. p) or Qpsp C
R? (Fig. @ Here ¥ is the velocity field (Qpop — R? or Qp3p — R3), P is the pres-
sure field, and v is the kinematic viscosity. The system — is completed by
imposing boundary conditions, see and for 2D and 3D case, respectively.

Let us note that our aim was to test feasibility of this approach. We do not claim
that obtained results from this preliminary stage are ready to be used in practice,
see discussion in Remark [£.1]



EJDE-2022/2025/CONF /26 FLOW IN POROUS MEDIA AND CFD SIMULATIONS 191
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FIGURE 4. Fracture network in the granite rock exposure, quarry
Spic by Necin.

— Outlet
Inlet —

Inlet —
— Outlet

FIGURE 5. 2D model of fracture network based on the most sig-
nificant fractures from the photograph on Fig. [

4.1. 2D model of fracture network. Our 2D model of fracture network is based
on the most significant fractures from the photograph on Fig. [l and is represented
by domain Qpap C (0,0.55) x (0,0.5) (in meters) with Lipschitz boundary dQpap.
This boundary 0Qpop = Tintet U Toutles U I'wanl is @ union of pairwise disjoint sets,
where Tinlet, Ioutlet, and I'wan represent inlet into the fracture network, outlet
from the fracture network, and fixed walls of the fracture network, respectively.
Our 2D model of fracture network has two inlets and two outlets to take into
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FIGURE 6. 3D model of fracture network. (a) Fracture network
based on the most significant fractures from the photograph on
Fig.[4 (b) 3D model with artificially added vertical fracture.

account possible mixing effects inside the network, see Fig. [f] More formally, we
have Finlet = {(LL‘,Z) € BQFZD: T = Tinlet, 2 € Iin1 U Iin2} and Foutlet = {(.’E,Z) €
aQFQD: T = Toutlet, 2 € Ioutl U Iout2}7 where Zipler = 0, Zoutlet = 0.55, Iinjufoutj -
(0,0.5), j = 1,2, are open intervals and Ijn, N Iin, = 0, Tous, N Tout, = 0. Thus,
outer normal vector fields 77 on Tiyer and Toygler are constant fields, 7 = (—1,0)
and 7 = (1,0), respectively.

The flow in the domain Qpop was simulated in OpenFOAM using simpleFOAM
solver by numerically solving — with boundary conditions

U= (0, 0) on Fwall s
U= (Uinleta O) on Tiplet ) (43)

P =0, v satisfies condition described below on I'gusiet -

We impose fluzCorrected Velocity outflow condition provided by OpenFOAM on
Toutlet- In essence, this nonlocal condition acts computationally in the following
way. An initial estimate of the velocity at the outlet is obtained so that the change in
velocity across the outlet boundary is zero. This initial guess is then corrected based
on the calculated flux leaving the domain. This correction ensures that the flux
leaving the domain matches the expected flow based on the pressure and the internal
flow field. For detailed information, see the OpenFOAM documentation [42].

Simulation is performed for several values of viylet, see Figure[7] In principle, this
is a numerical imitation of Darcy’s physical experiment with an adaptation for a
fractured rock. In his physical experiment, Darcy determined the total mechanical
energy loss Ep using the hydraulic head h, which neglects kinetic energy but can be
easily measured in reality using piezometers. In a numerical experiment, we do not
have the possibility to measure the hydraulic head using piezometers, so we have to
choose a different approach. Just as in a physical experiment, we want to determine
the mechanical energy loss of the fluid flowing through the fracture network. In
our numerical experiment, we are modeling the actual flow in the fractures and we
work with actual velocity ¥ not with the averaged velocity ¥U,,. In our case, the
term representing kinetic energy 1/2 pv? is not negligible, where v stands for the
magnitude of ¥.
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Since the velocity and pressure are dependent on location, we need to consider
average total mechanical energy per unit volume. For this purpose, we introduce

N ff ET dz
E . — inlet 4.4
Tinlet ff N dz ( )
P ff ET dz
EToutlet = ﬁ ) (45)
Toutlet

where
FCintet = {2 € Rt (@inlet, 2) € Tintet} = Liny U Tin, »

Foutlct = {Z eR: (l'outlctv Z) S Foutlet} = lout, U Iout2 .
Similar averaging approach was used in [37, p. 297] to define macroscopic pressure
and velocity.

Now, we obtain the constitutive relationship from numerical simulations as fol-
lows. We test the model for a range of values vinjet in (4.3) and record the values
of expression

AE‘T _ ETinlet - EToutlet

AL AL
Then we approximate dependence
NEr
ALT = flaw (uinlct)

by fitting parameters in the expression for fi,, to simulated flow data. We used
the following expressions
Sraw (Uinlet) = @ Uinlet , With parameter o > 0, for Darcy’s law, (4.6)
Siaw (UWintet) = Buil ., , with parameters 8,5 > 0, for power law. (4.7
The constitutive law for specific discharge ¢ = AinjetUinlet is then
AE)
AL )’
where Ayt = ff_ o dz is the cross-section area of the inlet.

Now we make a connection of results of these simulations to groundwater flow in
fractured hard-rock aquifers. The water table is observed in vertical boreholes. Due
to the much larger diameter of the borehole compared to the fractures, the ground-
water flow experiences a sudden expansion upon entering. This rapid increase in
cross-sectional area significantly reduces flow velocity and so the contribution of
the term corresponding to kinetic energy to total mechanical energy per volume
in the borehole can be neglected. Thus the water would rise approximately to
level hinlet = Erintet/(09) and houtiet = EToutier/(09) above the vertical datum if
the fictive boreholes are located in the inlet and outlet of the fracture network,
respectively. This leads us to the following form of the constitutive law

— hinlc - hou le
q= Ainlotflavlv (Qg %) .

By fitting each law (4.6)) and (4.7) to data collected from numerical simulations,
we obtained o = 17232.004 and 8 = 37969.871, v = 1.852982, with significantly
lower root mean square error 17.1324 for the power-type law (4.7) compared to

q= Ainletf&i;(

(4.8)
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AEr/AL
14000+
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0.0001 0.11832 120008
0.0003 0.35250
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0.0007 0.83353 10000f .
0.0009 1.07690 S
0.001 1.19945 S
0.003 3.79922 ool e
0.005 6.82157 i
0.007 9.95944 o7
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0.01 15.44159 6000 e
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.l . . . .
T 0.1 0.2 0.3 0.4 0.5
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FIGURE 7. Table: collected data from numerical simulations per-
formed on 2D model. Graphs: Darcy’s and power type law fitted
to the data.

776.396 for Darcy’s law , see Fig. m This finding strongly suggests that the
power-type law provides a much more accurate description of fluid flow behavior
in the specific type of fracture networks simulated in this study. Using these fitted
values of 8 and ~ in together with Ajner = 9.9987 - 1073 (computed for our
geometrical model), and g = 9.8066 (conventional standard value for gravitational
acceleration)

hinlet - houtlet

AL

)0.5397 - (49)

q= 0.004815(

Assuming that the fractured hard-rock aquifer is homogeneous, isotropic (in the
sense of porosity due to fractures) and formed by a system of fractures of the same
type as in the studied section, we can use the two-dimensional differential form
of constitutive law for substitution in the balance equation to obtain the
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equation for the groundwater level

oh ~ -
0.0347 52 — 0.004815 div (h|Vh|*0'4603Vh) =§(z,y,1), (4.10)
where we have used calculated value ¢og = 0.0347 (the ratio of volume of the
fracture network and volume of the sample of the rock) for our 2D geometric model
of fracture network. Let us note that the term |Vh|~%4693V A is understood in the
sense that it returns zero vector for zero vector as input, cf (2.4)).

Remark 4.1. Let us note that the hard-rock aquifers are often nor isotropic due
to prevailing orientation of the fractures nor homogeneous due to varying density
and aperture of the fractures, see, e.g., [29, [33] [40]. In our future research, we plan
to address these topics, especially the issue of anisotropy of nonlinear constitutive
laws.

4.2. 3D model of fracture network. Our 3D fracture network model also incor-
porates the most significant fractures from the photograph on Fig. To achieve
a spatially representative network, a single artificial fracture was added and con-
nected to existing fractures within the rock mass. Although the precise location
was not based on a specific observation, it aligns with typical fracture distributions
observed in the granitic exposures of the quarry. The fracture model is then rep-
resented by domain Qpsp C (0,0.55) x (0,0.5) x (0,0.5) with Lipschitz boundary
I0p3p. This boundary 0Qp3p = Tintet UL outiet Ul wan is a union of pairwise disjoint
sets, where T'iniet, Ioutlet, and I'ywan represent inlet into the fracture network, outlet
from the fracture network, and fixed walls of the fracture network, respectively.
Our 3D model of fracture network, see Fig. @, is such that Tiner C {(z,9,2) €
O0psp: & = Tinlet } and Doutlet C {(2,¥,2) € 003D : & = Toutlet } are sufficiently
regular, where Ziyet = 0 and zoutier = 0.55, so that outer normal vector fields 77 are
well defined on Tt and outler, respectively. Moreover, they are constant fields,
i =(—1,0,0) and 7 = (1,0,0) on Tiplet and Toutlet, respectively.

The flow in the domain Qpsp was simulated in OpenFOAM using simple FOAM
solver by numerically solving — with boundary conditions

= (0,0,0) on Iyan,
7= (vinlcm Oa 0) on Finlct s (411)
P =0, fluxCorrectedVelocity condition for ¥ on yytlet -

Simulation was performed for several values of viyet, see Figure |8l The procedure
was analogous as in the 2D case, using averaged values of total energy over the
surfaces of inlet and outlet. By fitting each law and , we obtained a =
7932.011 and B = 9899.873, v = 1.888399. Again, we found that root mean square
error 12.44 for the power-type law is significantly lower compared to 748.39
for Darcy’s law , see Fig. This strongly suggests that the power-type law
is much more accurate for the specific type of fracture networks simulated in this
study.

Using these fitted values of 8 and 7 in together with Ajy1e = 0.006 (com-
puted for our 3D geometrical model), and g as above, we find

hinlct - houtlct

0.529549
a )

q= 0.00597( (4.12)
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FiGURE 8. Table: collected data from numerical simulations per-
formed on 3D model. Graphs: Darcy’s and power type law fitted
to the data.

Under the same assumption on the hard-rock aquifer (homogeneous, isotropic, and
formed by a system of fractures of the same type as in the studied section), we
obtain the equation for the groundwater level

oh e -~
0.04728 2 — 0.00597 div (h|Vh|*0'4704Vh) =§(z,y,1), (4.13)

where we have used calculated value ¢og = 0.04728 (the ratio of the volume of the
fracture network and the volume of the sample of the rock) for our 3D geometric
model of fracture network.
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5. P. DRABEK AND THE p-LAPLACIAN

Prior to embarking on the main discourse of this section, all the three authors
of this paper would like to extend their sincere congratulations to their esteemed
teacher, Pavel Drabek, on the occasion of his 70th birthday. They would like to
express their profound gratitude for his guidance and introduction to nonlinear
analysis, with a particular emphasis on the p-Laplacian, since the early stages of
their studies and scientific careers. One of the key themes of P. Drabek is the quest
for an analogue of the Fredholm alternative for nonlinear operators, particularly
for the p-Laplacian. This topic was a major focus of research at Prague School of
Nonlinear Analysis in the 1970s, where it was probably brought by J. Necas, Ph.D.
advisor of S. Fuéik (who was later mentor and advisor of P. Drébek). Let us note
that Prague School of Nonlinear Analysis (or Prague School for short) was an infor-
mal research group of mathematicians primarily from Charles University Prague,
the Czechoslovak Academy of Sciences, and other academic institutions based in
Prague. The groundbreaking results of the Prague School were published in mono-
graph Spectral analysis of nonlinear operators by S. Fucik, J. , J. Soucek, V. Soucek,
published in 1973, see [2I]. After the premature death of S. Fuéik in 1979, this topic
gradually lost its importance in the Prague School. Among other things, because
it was a very difficult topic and after the publication of the above mentioned mono-
graph no more significant breakthroughs were achieved. Fortunately, this topic did
not completely disappear thanks to P. Drabek. His passion for this topic was ig-
nited under the mentorship of S. Fucik, and he has been diligently researching it
ever since his diploma thesis. After accomplishing his C.Sc. degree (equivalent of
Ph.D.) at Czechoslovak Academy of Sciences, P. Drébek relocated to Plzen, where
he got position in the department of mathematics at the College of Mechanical and
Electrical Engineering (precursor of today’s University of West Bohemia). Here he
continued to pursue his research in Fredholm alternative for nonlinear operators
and the p-Laplacian while the Prague School’s primary research focus shifted to
Navier-Stokes equations at the prompting of J. Necas. P. Drabek always returned
to the topic with a certain time lag and still does. During almost half a century, an
interesting and extensive series of articles has been written, from which each rep-
resenting a major advance. In addition, he has long been attracted to this subject
attention, and so some of the seminal articles have been written without his direct
input (co-authorship), but it would hardly be without his persistence in present-
ing papers at conferences, seminars and in discussions with a number of eminent
mathematicians.
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