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TRAVELING WAVE SOLUTIONS FOR AN EPIDEMIC MODEL

ZHENBU ZHANG

Abstract. In this article, we consider a one-dimensional reaction-diffusion

epidemic model, which is neither cooperative nor competitive. We study the

possible impact of the spatial movement by investigating the existence of trav-
eling wave solutions. We construct a pair of upper-lower solutions and then

use Shauder’s fixed point theorem to prove the existence of nonnegative non-

trivial bounded semi-traveling wave solution. This is done by introducing a
critical wave speed depending on the diffusion coefficients and other parame-

ters in the model such that, for the wave speed that is greater than the critical

wave speed, the model has such a solution. We also derive a condition under
which the model has no nonnegative nontrivial bounded semi-traveling wave

solution.

1. Introduction

Mathematical models play an important role in understanding the transmission
and spread and estimating the impact of control measures of infectious disease like
influenza, rabies, rubeola, malaria, dengue disease, COVID-19, etc. It turns out
that the transmission and spread of almost all infectious diseases heavily depend
on climate, rainfall, environment(temperature and humidity), social interactions,
migration of population, and the spatial and genetic heterogeneity of host and
parasite. In order to investigate the possible impact of the spatial movement of
population, following [21], we consider one-dimensional reaction-diffusion epidemic
model described by

∂ui

∂t
= diuixx + fi(u), 1 ≤ i ≤ n, x ∈ R, t > 0, (1.1)

where ui is the density of a population in compartment i and di is the diffusion
coefficient of population i, fi is the reaction term in compartment i under the
influences of demographic process and epidemic interactions. u = (u1, u2, . . . , un)

T

with ui ≥ 0 represents the state of individuals in all compartments. Traveling waves
are a common phenomenon in biology. The existence of traveling wave solutions
for a reaction-diffusion system determines the long-term behavior of other solutions
of the system and reveals a lot of information for the spread and transmission of
the disease. In this paper, we introduce a critical wave speed c̃ such that (1.1)
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has a nonnegative nontrivial semi-traveling wave solution u(t, x) = U(z), where
z = x + ct, if c ≥ c̃. In epidemiology, the existence and nonexistence of nontrivial
traveling waves indicate whether an infectious disease could persist as a wave front
of infection that travels geographically across vast distance [4].

Because of the general form of fi(u) in the model, (1.1) can be applied to a large
class of compartmental epidemic models. It has been investigated from various
aspects. The corresponding multi-dimensional version of model (1.1) on a bounded
region with smooth boundary coupled with homogeneous Neumann boundary con-
dition has been investigated in [21]. The corresponding reaction model has been
investigated in [20].

One of the most important concerns about infectious disease is its ability to
spread into a population. The minimal wave speed cmin for a traveling wave is a
key parameter to characterize the speed at which the disease spreads in a spatial
domain [4, 12, 24, 26]. Biologically speaking, epidemics can spread for c ≥ cmin

while they cannot spread for c < cmin [4]. Therefore, estimating the minimal wave
speed cmin is a very significant work both theoretically and practically. It was first
conjectured by Fisher in [8] that for model

ut = duxx + ρu(1− u)

the minimal wave speed cmin equals the spreading speed c∗ at which the region
{x : u ∼ 1} takes over the set {x : u(x, 0) = 0} (see [17]). The conjecture was
proved in [14]. Under certain assumptions, it has been proved (e.g. [2, 3]) that, for
some more general models, the minimal wave speed cmin is equal to the spreading
speed c∗. But usually, it is difficult to estimate c∗. When c∗ is equal to the spreading
speed c̄ of the linearized system of (1.1) around the unique disease-free equilibrium,
the spreading speed c∗ of (1.1) is said to be linearly determined (see [15, 23]). If
this is the case, we can estimate c∗ as well as cmin by estimating c̄. Usually, to
estimate c̄ is much easier than to estimate c∗ or cmin. For some models, c̄ can be
estimated quantitatively, see [15].

It is shown in [17, 23] that if (1.1) is cooperative, that is, fiuj
≥ 0 for j ̸= i,

then under certain assumptions, (1.1) is linearly determined. This method has been
applied to estimate the minimal wave speed cmin for a west nile virus model in [16]
and a malaria model in [27].

If (1.1) is a competitive model, we can use an appropriate change of variables as
done in [15] to change it to a cooperative system and then use the method in [17]
to estimate the minimal wave speed cmin.

Unfortunately, some systems are neither cooperative nor competitive like the
models investigated in [4, 9, 10, 24, 25, 26]. For these models, the method proposed
in [17] cannot be used to estimate the minimal wave speed cmin.

In this article, we adapt the approach used in [4] (same method is also used in
[10, 18, 19, 22, 26]) to introduce a critical wave speed c̃ and to derive some sufficient
conditions under which semi-traveling wave solutions exist. The critical wave speed
c̃ introduced here will play an important role in estimating the minimal wave speed
cmin. For some special cases, this critical wave speed coincides with the minimal
wave speed of traveling wave solutions under appropriate assumptions. Because
of the generality of our model, we have to overcome some technical difficulties by
making appropriate changes.
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To distinguish the disease-free states and infected states, following [20, 21], we
let

uI = (u1, u2, . . . , um)T , dI = diag(d1, d2, . . . , dm),

uS = (um+1, um+2, . . . , un)
T , dS = diag(dm+1, dm+2, . . . , dn),

where ui, 1 ≤ i ≤ m, represent the infected compartments, and ui, m+ 1 ≤ i ≤ n
represent the uninfected compartments. Then we write (1.1) as

∂uI

∂t
= dIuIxx + fI(u) x ∈ R, t > 0,

∂uS

∂t
= dSuSxx + fS(u), x ∈ R, t > 0,

(1.2)

where

fI(u) = (f1(u), f2(u), . . . , fm(u))T , fS(u) = (fm+1(u), fm+2(u), . . . , fn(u))
T .

We assume that fi(u) has the following form, for i = 1, 2, . . . ,m,

fi(u) = fi(u1, u2, . . . , un)

=
( m∑

j=1

aijuj

)(
bi0 +

n∑
k=m+1

bikuk

)
− qiui

= AiBi − qiui,

(1.3)

and for i = m+ 1,m+ 2, . . . , n,

fi(u) = fi(u1, u2, . . . , un)

= Qi −
( m∑

j=1

aijuj

)( n∑
k=m+1

bikuk

)
− qiui

= Qi −AiCi − qiui,

(1.4)

where Qi(i = m + 1,m + 2, . . . , n) and qi(i = 1, 2, . . . , n) are positive constants,
aij , bj0, bik (i = 1, 2, . . . , n, j = 1, 2, . . .m, k = m+1,m+2, . . . , n) are nonnegative
constants and

Ai = Ai(uI) = Ai(u1, u2, . . . , um) =

m∑
j=1

aijuj , i = 1, 2, . . . , n,

Bi = Bi(uS) = Bi(um+1, um+2, . . . , un) = bi0 +

n∑
k=m+1

bikuk, i = 1, 2, . . . ,m,

Ci = Ci(uS) = Ci(um+1, um+2, . . . , un) =

n∑
k=m+1

bikuk i = m+ 1,m+ 2, . . . , n.

Such a model includes the diffusive influenza model with multiple strains

∂I1
∂t

= d1I1xx + (1− f)β1(I1 + δI2)S − k1I1, x ∈ R, t > 0,

∂I2
∂t

= d2I2xx + f(1− r)β1(I1 + δI2)S − k2I2, x ∈ R, t > 0,

∂I3
∂t

= d3I3xx + [frβ1(I1 + δI2) + β2I3]S − k3I3, x ∈ R, t > 0,

∂S

∂t
= dSSxx + Λ− [β1(I1 + δI2) + β2I3]S − µS, x ∈ R, t > 0

(1.5)
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which was investigated in [4]. The differential susceptibility epidemic model

∂I

∂t
= dIIxx + ηβI

l∑
j=1

αjSj − (µ+ γ)I x ∈ R, t > 0,

∂Si

∂t
= diSixx + µpiS

0 − ηβαiISi − µSi, x ∈ R, t > 0, i = 1, 2, . . . , l,

(1.6)

whose corresponding reaction model was investigated in [13]. The within-host HIV
model with cell-to-cell transmission,

∂I1
∂t

= d1I1xx + (β1I1 + β2I2)S − rI1, x ∈ R, t > 0,

∂I2
∂t

= d2I2xx + δI1 − µI2, x ∈ R, t > 0,

∂S

∂t
= dSSxx + λ− (β1I1 + β2I2)S − ηS, x ∈ R, t > 0

(1.7)

investigated in [19]. By direct computations, for i, j = 1, 2, . . . ,m, we have

∂fi
∂uj

= aijBi, j ̸= i,

∂fi
∂ui

= aiiBi − qi ;

for i = 1, 2, . . . ,m, j = m+ 1,m+ 2, . . . , n, we have

∂fi
∂uj

= bijAi ;

for i = m+ 1,m+ 2, . . . , n, j = 1, 2, . . . ,m, we have

∂fi
∂uj

= −aijCi ;

and for i, j = m+ 1,m+ 2, . . . , n, we have

∂fi
∂uj

= −bijAi, j ̸= i,

∂fi
∂ui

= −biiAi − qi.

From these expressions we can see that model (1.2) is neither cooperative nor
competitive.

This article is organized as follows. In next section we summarize some results
for the corresponding reaction model that will be used in the following sections.
In Section 3, we introduce a critical wave speed and establsih the existence of
semi-traveling wave solutions. In Section 4, we prove a theorem of nonexistence of
traveling wave solutions. Finally, in Section 5, we summarize what we did in this
paper and suggest some possible directions of future work.

2. Basic reproduction number for the reaction model and some
examples

When the spatial diffusion of population is omitted, the diffusive model (1.1) is
reduced to the reaction model

dui

dt
= fi(u), i = 1, 2, . . . , n, (2.1)
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where ui = ui(t) is independent of x. Since (1.1) is autonomous, the dynamics
of (2.1) can give us some insight into the model (1.1). Therefore, we will cite
some results about (2.1) from other references (see [20] and the references therein)
and look at some specific examples. It is easily seen that (2.1) has a disease-free

equilibrium E0 = (0, . . . , 0, u0
m+1, . . . , u

0
n)

T with u0
i = Qi

qi
> 0, m+ 1 ≤ i ≤ n. The

disease-free equilibrium is the population before the transmission of the disease.
Write the linearized system of (2.1) around E0 as

du

dt
= Df(E0)(u− E0),

where Df(E0) is the derivative [ ∂fi∂uj
]n×n evaluated at E0. More specifically,

Df(E0) =

[
E −Q 0
−J −MS

]
,

where

E =


a11B

0
1 a12B

0
1 · · · a1mB0

1

a21B
0
2 a22B

0
2 · · · a2mB0

2

· · · · · · · · · · · ·
am1B

0
m am2B

0
m · · · ammB0

m


m×m

corresponds to the new infection,

Q =


q1 0 · · · 0
0 q2 · · · 0
· · · · · · · · · . . .
0 0 . . . qm


m×m

corresponds to the remaining transfer terms,

J =


a(m+1)1C

0
m+1 a(m+1)2C

0
m+1 · · · a(m+1)mC0

m+1

a(m+2)1C
0
m+2 a(m+2)2C

0
m+2 · · · a(m+2)mC0

m+2

· · · · · · · · · · · ·
an1C

0
n an2C

0
n · · · anmC0

n


(n−m)×m

,

MS =


qm+1 0 · · · 0
0 qm+2 · · · 0
· · · · · · · · · · · ·
0 0 · · · qn


(n−m)×(n−m)

,

where

B0
i = Bi(u

0
S) = Bi(u

0
m+1, . . . , u

0
n), i = 1, 2, . . . ,m,

C0
i = Ci(u

0
S) = Ci(u

0
m+1, . . . , u

0
n), i = m+ 1,m+ 2, . . . , n.

Recall that the basic reproduction number R0 is the expected number of sec-
ondary infections generated by a single infectious individual during the infection
period in an entirely susceptible population (see [1, 5, 6, 11, 20, 21]). To intro-
duce R0, following [20, 21] (also see the references therein), consider a “typical”
infectious individual introduced into a completely susceptible population, to see
how many new infections will be produced. Let ϕi(0) be the number of infected
individuals initially in compartment i. Without reinfection, at any time t, let
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ϕ(t) = (ϕ1(t), ϕ2(t), . . . , ϕm(t))T be the total infective member which were devel-
oped from those initially infected individuals ϕi(0), then ϕ(t) satisfies

ϕ′(t) = −Qϕ(t), ϕ(0) = (ϕ1(0), ϕ2(0), . . . , ϕm(0))T .

Therefore, ϕ(t) = e−Qtϕ(0). Thus, the new infection at time t is Eϕ(t) = Ee−Qtϕ(0).
Consequently, the expected number of new infections produced by the initially in-
fected individuals is∫ ∞

0

Eϕ(t)dt =

∫ ∞

0

Ee−Qtϕ(0)dt = EQ−1ϕ(0).

EQ−1 is called the next generation matrix for the model (see [6]). Following [6, 19,
20, 21], we introduce the basic reproduction number

R0 = ρ(EQ−1),

the spectral radius of EQ−1. R0 is the threshold value for the local stability of the
disease-free equilibria of (2.1) as stated in the following theorem from [20] (see [5]
for a similar result).

Theorem 2.1. Let E0 be a disease-free equilibrium of model (2.1), then E0 is
locally asymptotically stable if R0 < 1, but unstable if R0 > 1.

For model (1.5), m = 3, n = 4. For notation convenience, denote ω = Λ
µ ,

α = (1− f)β1, β = f(1− r)β1, γ = frβ1, then E0 = (0, 0, 0, ω),

Df(E0) =

[
E −Q 0
−J −MS

]
,

where

E = ω

α αδ 0
β βδ 0
γ γδ β2

 , Q =

k1 0 0
0 k2 0
0 0 k3

 ,

J =
[
β1ω β1δω β2ω

]
, MS = µ.

It is easily seen that

EQ−1 = ω


α
k1

αδ
k2

0
β
k1

βδ
k2

0
γ
k1

γδ
k2

β2

k3


and its two nonzero eigenvalues are

λ1 = ω
( α

k1
+

βδ

k2

)
,

which is denoted by RSC in [4], representing the number of secondary sensitive
cases that one individual infected with the sensitive strain initiates in a completely
susceptible population where antiviral treatment is implemented, and

λ2 =
β2ω

k3
,

which is denoted by RRC in [4], representing the number of secondary resistant
cases that one individual infected with the resistant strain initiates in a completely
susceptible population.

ρ(EQ−1) = max{λ1, λ2}
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is denoted by RC in [4] and is called the control reproduction number of the corre-
sponding reaction model, which is used to determine whether the epidemic can be
contained when certain control measures are taken (also see [1]).

For model (1.6), m = 1, n = l + 1. Denote ω = ηβS0, q = µ + γ, then
E0 = (0, p1S

0, p2S
0, . . . , plS

0),

Df(E0) =


ω
∑l

j=1 αjpj − q 0 0 0 · · · 0

−ωα1p1 −µ 0 0 · · · 0
−ωα2p2 0 −µ 0 · · · 0

· · · · · · · · · · · · · · · · · ·
−ωαlpl 0 0 0 · · · −µ

 .

ρ(EQ−1) = EQ−1 =
ω
∑l

j=1 αjpj

q
=

ηβS0
∑l

j=1 αjpj

µ+ γ
,

which is the reproductive number R0 introduced in [13].
For model (1.7), m = 2, n = 3, we denote ω = λ

µ . Then E0 = (0, 0, ω) and

Df(E0) =

[
E −Q 0
−J −MS

]
,

where

E =

[
β1ω β2ω
δ 0

]
, Q =

[
r 0
0 µ

]
, J = [β1ω β2ω], MS = η.

It is easily seen that

EQ−1 =

[β1ω
r

β2ω
µ

δ
r 0

]
and its two eigenvalues are

λ =
β1λ±

√
β2
1λ

2 + 4β2δrλ

2rµ
.

Thus,

ρ(EQ−1) =
β1λ+

√
β2
1λ

2 + 4β2δrλ

2rµ
.

3. Semi-traveling waves for the diffusive model

The existence of traveling wave solutions for reaction-diffusion models is one of
the most important topics for the past several decades. To investigate the existence
of traveling wave solutions for (1.1), we start with the existence of so-called semi-
traveling waves as defined in the following definition from [4, 12, 26].

Definition 3.1. A solution u(t, x) of (1.2) of the form

u(t, x) = U(z),

where z = x+ ct, is called a semi-traveling wave solution connected to the disease-
free equilibrium E0 if it satisfies

lim
z→−∞

U(z) = E0. (3.1)
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From the definition we can see that a semi-traveling wave solution is a traveling
wave solution starting from the disease-free equilibrium. Such a solution is of
biological significance since we can get a lot of information from it, such as whether
epidemics will spread, asymptotic speed of propagation, and the final state of the
wavefront, etc.

To prove the existence of semi-traveling wave solution for (1.1), we adapt the ap-
proach used in [4, 10, 18, 19, 22, 24, 25, 26]. That is, first we introduce an auxiliary
system, then construct a pair of upper-lower solutions for the auxiliary system by
linearizing the corresponding wave equation at the disease-free equilibrium. Then,
use the Schauder’s fixed point theorem to prove the existence of semi-traveling
wave solution for the auxiliary system. Finally, by taking the limit, we obtain the
existence of semi-traveling wave solution for (1.1).

We consider the following auxiliary system related to (1.2),

∂uI

∂t
= dIuIxx,+fI(u)− δImu2

I x ∈ R, t > 0,

∂us

∂t
= dSuSxx + fS(u), x ∈ R, t > 0,

(3.2)

where u2
I = (u2

1, u
2
2, . . . , u

2
m)T , δ > 0 is a small number, and Im is the identity

matrix of size m. Let u(t, x) = U(z) be a semi-traveling wave solution of (3.2),
then U satisfies

cU ′
I = dIU

′′
I + fI(U)− δImU2

I ,

cU ′
S = dSU

′′
S + fS(U),

(3.3)

where UI = (U1, U2, . . . , Um)T and US = (Um+1, Um+2, . . . , Un)
T . The limiting

equations of (3.3) as δ → 0 are the wave equations corresponding to (1.2), especially,
the equation involving UI only is the equation

cU ′
I = dIU

′′
I + fI(U) (3.4)

Linearizing (3.4) around the disease-free equilibrium E0 leads to the linear system

cΦ′
I = dIΦ

′′
I + EΦI −QΦI , (3.5)

where ΦI = (ϕ1, ϕ2, . . . , ϕm)T . Next we are going to introduce a critical wave speed
c̃. To do this, we adopt the method used in [4]. Let (ϕ1(z), ϕ2(z), . . . , ϕm(z)) =
eλz(v1, v2, . . . , vm), then system (3.5) is equivalent to

A(v1, v2, . . . , vm)T = cλ(v1, v2, . . . , vm)T , (3.6)

where

A = λ2dI + E −Q.

Denoting V = (v1, v2, . . . , vm)T , we can write (3.6) as

(λ2dI − cλIm −Q)V = −EV

or

(−λ2Q−1dI + cλQ−1 + Im)V = Q−1EV.

By direct computations, we have

B(λ, c) = −λ2Q−1dI + cλQ−1 + Im

= diag
(−d1λ

2 + cλ+ q1
q1

, . . . ,
−dmλ2 + cλ+ qm

qm

)
.
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Assume λ > 0 such that −diλ
2 + cλ+ qi > 0. Then B(λ, c) is invertible and the

above equation can be written as

B(λ, c)−1(Q−1E)V = V.

Denoting H(λ, c) = B(λ, c)−1(Q−1E), we have

H(λ, c)V = V. (3.7)

Let d = max1≤i≤m di > 0. Observe that, for c > 0, the two roots of−diλ
2+cλ+qi =

0 are

λ1 =
c−

√
c2 + 4diqi
2di

< 0,

and

λ2 =
c+

√
c2 + 4diqi
2di

>
c

di
≥ c

d
> 0,

we know that, for λ ∈ [0, c
d ], B(λ, c) is invertible and

B(λ, c)−1 = diag
( q1
−d1λ2 + cλ+ q1

, . . . ,
qm

−dmλ2 + cλ+ qm

)
,

and H(λ, c) is a nonnegative matrix.
Let pci(λ) = −diλ

2 + cλ+ qi, then

γi(c) = pci(
c

2d
) =

(2d− di)c
2

4d2
+ qi > 0

and which is strictly increasing for c ∈ [0,∞). Thus, H( c
2d , c) is strictly decreasing

for c ∈ [0,∞) and H(0, 0) = Q−1E.
Denote by ρ(H(λ, c)) the principal eigenvalue of the nonnegative matrix H(λ, c)

for λ ∈ [0, c
2d ]. Since ρ(H(λ, c)) is continuous and monotonically increasing with

respect to the nonnegative matrix H(λ, c), ρ(H( c
2d , c)) is strictly decreasing for

c ∈ [0,∞) with ρ(H(0, 0)) = ρ(Q−1E) and

lim
c→∞

ρ
(
H
( c

2d
, c
))

= 0.

It can be shown that ρ(Q−1E) = ρ(EQ−1)(see [4]). Therefore, ifR0 = ρ(EQ−1) =
ρ(Q−1E) = ρ(H(0, 0)) > 1, by the continuity and monotonicity of ρ(H( c

2d , c)) with

respect to c, there exists a unique c̃ > 0 such that ρ(H( c̃
2d , c̃)) = 1 and for c ∈ [0, c̃),

ρ(H( c
2d , c)) > 1. For c ∈ (c̃,∞), ρ(H( c

2d , c)) < 1.

For any c > c̃ fixed, since p′ci(λ) = c − 2diλ > 0 for λ ∈
[
0, c

2d

]
, ρ(H(λ, c)) is

strictly decreasing and nonnegative for λ ∈
[
0, c

2d

]
. But,

ρ(H(0, c)) = ρ(H(0, 0)) = R0 > 1

and ρ(H( c
2d , c)) < 1, by the continuity and monotonicity of ρ(H(λ, c)) with respect

to λ, there exists a unique λc ∈
(
0, c

2d

)
such that ρ(H(λc, c)) = 1 and for λ ∈ [0, λc),

ρ(H(λ, c)) > 1, and for λ ∈
(
λc,

c
2d

]
, ρ(H(λ, c)) < 1. Thus we have the following

lemma (see [4, Lemmas A.1 and A.2]).

Lemma 3.2. If R0 = ρ(EQ−1) > 1, then, there exists a unique c̃ > 0 such that
for any c > c̃, there exists a unique λc ∈

(
0, c

2d

)
and Vc = (v1, v2, . . . , vm)T with

vi > 0, 1 ≤ i ≤ m, such that

H(λc, c)Vc = Vc.



10 Z. ZHANG EJDE-2022/25/CONF/26

The vector ΦI = (ϕ1(z), ϕ2(z), . . . , ϕm(z))T with ϕi(z) = vie
λcz, i = 1, 2, . . . ,m,

satisfies (3.5).

Now we adapt the approach in [4] with necessary changes to construct a pair of
upper-lower solutions of (3.3). That is, we define

US(z) = (u0
m+1, . . . , u

0
n)

T ,

US(z) = (um+1(z), . . . , un(z))
T ,

with ui(z) = max{u0
i (1− ηeαz), 0} for m+ 1 ≤ i ≤ n, and

UI(z) = (u1(z), . . . , um(z))T ,

with ui(z) = min{vieλcz, viω} for 1 ≤ i ≤ m,

UI(z) = (u1(z), . . . , um(z))T ,

with ui(z) = max{vieλcz(1 − τeµz), 0} for 1 ≤ i ≤ m, where constants η, α, ω, τ, µ
are to be determined later.

Lemma 3.3. For ω > 1 large enough, UI(z) satisfies

cUI
′ ≥ dIUI

′′
+ fI(U)− δImUI

2
, (3.8)

where U = U(z) = (UI(z), US(z))
T .

Proof. From the definition of ui(z) = min{vieλcz, viω} for 1 ≤ i ≤ m, if z such that

eλcz ≤ ω, i.e. z ≤ lnω
λc

≜ z1, then ui(z) = vie
λcz and UI(z) = ΦI . Then, from the

definition of E, Q, and U , we have fI(U) = (E − Q)ΦI . Therefore, from Lemma
3.2 and (3.5), we have

dIUI
′′ − cUI

′
+ fI(U) = dIΦ

′′
I − cΦ′

I + EΦI −QΦI = 0 ≤ δImUI
2
.

That is, (3.8) holds.
If z > z1, then ui(z) = viω and UI(z) = ωVc. Then

dIUI
′′ − cUI

′
+ fI(U)− δImUI

2
= fI(U)− δIm(v21 , . . . , v

2
m)Tω2.

But, for i = 1, 2, . . . ,m,

fi(U)− δv2i ω
2 =

m∑
j=1

aijvjωB
0
i − qiviω − δv2i ω

2

= (

m∑
j=1

aijvjB
0
i − qivi − δv2i ω)ω.

Therefore, if we take ω > 1 such that

ω > max
1≤i≤m

∑m
j=1 aijvjB

0
i − qivi

δv2i
,

then

dIUI
′′ − cUI

′
+ fI(U)− δImUI

2 ≤ 0

and (3.8) holds. This completes the proof. □



EJDE-2022/2025/CONF/26 TRAVELING WAVE SOLUTIONS 11

Lemma 3.4. For 0 < α < min{ c
D , λc} and

η > max
{
1, max

m+1≤i≤n

(
∑m

j=1 aijvj)(
∑n

k=m+1 biku
0
k)

qiu0
i

}
,

US(z) satisfies

cUS
′ ≤ dSUS

′′ + fS(Ũ), (3.9)

where D = max{dm+1, . . . , dn} and Ũ = Ũ(z) = (UI(z), US(z))
T .

Proof. Let z2 = − ln η
α < 0. If z satisfies z ≥ z2, then ui(z) = 0 for m+ 1 ≤ i ≤ n,

US(z) = (0, . . . , 0)T and Ũ = (UI(z), 0, . . . , 0)
T . Thus, fS(Ũ) > 0. Therefore, (3.9)

holds.
If z ≤ z2, ui(z) = u0

i (1 − ηeαz) for m + 1 ≤ i ≤ n. Observe that z2 < 0 < z1,

ui(z) = vie
λcz for 1 ≤ i ≤ m. Thus,

Ũ = (v1e
λcz, . . . , vmeλcz, u0

m+1(1− ηeαz), . . . , u0
n(1− ηeαz))T ,

and
dSUS

′′ − cUS
′ + fS(Ũ) = (−dSα

2 + cα)ηeαzΘ+ fS(Ũ),

where Θ = (u0
m+1, . . . , u

0
n)

T .
Since, for m+ 1 ≤ i ≤ n,

fi(Ũ)

= Qi −
( m∑

j=1

aijvje
λcz

)( n∑
k=m+1

biku
0
k(1− ηeαz)

)
− qiu

0
i (1− ηeαz)

= Qi − eλcz(1− ηeαz)
( m∑

j=1

aijvj

)( n∑
k=m+1

biku
0
k

)
− qiu

0
i + qiηu

0
i e

αz

= ηeλczeαz
( m∑

j=1

aijvj

)( n∑
k=m+1

biku
0
k

)
− eλcz

( m∑
j=1

aijvj

)( n∑
k=m+1

biku
0
k

)
+ qiηu

0
i e

αz

≥ −eλcz
( m∑

j=1

aijvj

)( n∑
k=m+1

biku
0
k

)
+ qiηu

0
i e

αz,

we have

diu
′′
i − cu′

i + fi(Ũ)

≥ (−diα
2ηu0

i + cαηu0
i )e

αz − eλcz
( m∑

j=1

aijvj

)( n∑
k=m+1

biku
0
k

)
+ qiηu

0
i e

αz

=
[
− diα

2ηu0
i + cαηu0

i + qiηu
0
i − e(λc−α)z

( m∑
j=1

aijvj

)( n∑
k=m+1

biku
0
k

)]
eαz

≥
[
(−diα

2 + cα+ qi)ηu
0
i −

( m∑
j=1

aijvj

)( n∑
k=m+1

biku
0
k

)]
eαz ≥ 0

for 0 < α < min{ c
D , λc} and

η >
(
∑m

j=1 aijvj)(
∑n

k=m+1 biku
0
k)

qiu0
i

.

Therefore, (3.9) holds. This completes the proof. □
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Lemma 3.5. Let 0 < µ < α < λc small enough such that λc + µ < c
2d . Then for

τ > 1 large enough, UI(z) satisfies

cUI
′ ≤ dIUI

′′ + fI(U)− δImUI
2, (3.10)

where U = U(z) = (UI(z), US(z))
T .

Proof. If 1 − τeµz ≤ 0, that is, z ≥ − ln τ
µ ≜ z3, UI = (0, . . . , 0). Then, we have

fI(U) = 0 and (3.10) holds. For z < z3, ui(z) = vie
λcz(1−τeµz) for 1 ≤ i ≤ m. For

τ > 1 large enough (depending on α and η), we have z3 < z2 < 0. Thus, for z < z3,
ui(z) = u0

i (1− ηeαz) for m+ 1 ≤ i ≤ n and U = (v1e
λcz(1− τeµz), . . . , vmeλcz(1−

τeµz), u0
m+1(1− ηeαz), . . . , u0

n(1− ηeαz))T . Thus, for 1 ≤ i ≤ m,

ui
′(z) = vi[λc(1− τeµz)− τµeµz]eλcz,

and

ui
′′(z) = vi[λ

2
c(1− τeµz)− (2λcτµ+ τµ2)eµz]eλcz.

Therefore, for 1 ≤ i ≤ m, we have

cu′
i − diu

′′
i − fi(U) + δu2

i

= cvi[λc(1− τeµz)− τµeµz]eλcz

− divi[λ
2
c(1− τeµz)− (2λcτµ+ τµ2)eµz]eλcz

−
[ m∑
j=1

aijvje
λcz(1− τeµz)

(
bi0 +

n∑
k=m+1

biku
0
k(1− ηeαz)

)]
+ qivie

λcz(1− τeµz) + δv2i e
2λcz(1− τeµz)2

= eλcz(1− τeµz)
[
− diviλ

2
c + cviλc −

( m∑
j=1

aijvj

)(
bi0 +

n∑
k=m+1

biku
0
k

)
+ qivi

]
+ [divi(2λcτµ+ τµ2)− cviτµ]e

(λc+µ)z

+ ηeλcz(1− τeµz)eαz
( m∑

j=1

aijvj

)( n∑
k=m+1

biku
0
k

)
+ δv2i e

2λcz(1− τeµz)2.

Since ΦI = (v1e
λcz, . . . , vmeλcz)T satisfies (3.5), we have

−diviλ
2
ce

λcz + cviλce
λcz −

( m∑
j=1

aijvje
λcz

)(
bi0 +

n∑
k=m+1

biku
0
k

)
+ qivie

λcz = 0,

or

−diviλ
2
c + cviλc −

( m∑
j=1

aijvj

)(
bi0 +

n∑
k=m+1

biku
0
k

)
+ qivi = 0.

Therefore,

cu′
i − diu

′′
i − fi(U) + δu2

i

= [divi(2λcτµ+ τµ2)− cviτµ]e
(λc+µ)z

+ ηeλcz(1− τeµz)eαz
( m∑

j=1

aijvj

)( n∑
k=m+1

biku
0
k

)
+ δv2i e

2λcz(1− τeµz)2

= e(λc+µ)z
{
[di(2λc + µ)− c]viτµ
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+ η(1− τeµz)e(α−µ)z
( m∑

j=1

aijvj

)( n∑
k=m+1

biku
0
k

)
+ δv2i e

(λc−µ)z(1− τeµz)2
}
.

Observe that, for z < z3 = − ln τ
µ , we have 0 < 1− τeµz < 1 and ez < e−

ln τ
µ . Thus,

for 0 < µ < α < λc,

e(α−µ)z < e−(α−µ) ln τ
µ ,

and

e(λc−µ)z < e−(λc−µ) ln τ
µ .

Hence,

cu′
i − diu

′′
i − fi(U) + δu2

i

≤ e(λc+µ)z
{
[di(2λc + µ)− c]viτµ

+ ηe−(α−µ) ln τ
µ

( m∑
j=1

aijvj

)( n∑
k=m+1

biku
0
k

)
+ δv2i e

−(λc−µ) ln τ
µ

}
.

Since λc <
c
2d , we can choose µ > 0 small enough such that

λc + µ <
c

2d
.

Then

di(2λc + µ) < d(2λc + µ) < 2d(λc + µ) < c.

Therefore, di(2λc + µ)− c < 0, and we can choose τ > 1 large enough so that

[di(2λc + µ)− c]viτµ

+ ηe−(α−µ) ln τ
µ

( m∑
j=1

aijvj

)( n∑
k=m+1

biku
0
k

)
+ δv2i e

−(λc−µ) ln τ
µ ≤ 0.

Thus, cu′
i−diu

′′
i −fi(U)+δu2

i ≤ 0, and (3.10) holds. This completes the proof. □

Now we use Schauder’s fixed point theorem to prove the existence of semi-
traveling wave solutions of (3.2). To do this, we introduce Banach space Cσ(R,Rn)
such that for U = (u1(z), . . . , un(z))

T ∈ Cσ(R,Rn), its norm is defined by

∥U∥ ≜ |U(·)|σ = max
1≤i≤n

sup
z∈R

|ui(z)|e−σ|z|,

where σ > 0 will be determined later. We are going to look for semi-traveling wave
solutions U(z) = (UI(z), US(z))

T ∈ Cσ(R,Rn) of (3.2) satisfying

UI(z) ≤ UI(z) ≤ UI(z), US(z) ≤ US(z) ≤ US(z).

Consider the closed and convex subset Σ of Cσ(R,Rn) given by

Σ = {U = (UI , US)
T ∈ Cσ(R,Rn), UI ≤ UI ≤ UI , US ≤ US ≤ US},

and define map Γ = (ΓI ,ΓS) : Σ → Cσ(R,Rn) as follows:
For U(z) = (UI(z), US(z))

T ∈ Σ:

Γ(U) = (ΓI(U),ΓS(U)) = (Γ1(U), . . . ,Γm(U),Γm+1(U), . . . ,Γn(U)),

ΓI(U) = FIUI + fI(U)− δImU2
I ,

ΓS(U) = FSUS + fS(U),
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where

FI =


ξ1 0 0 . . . 0
0 ξ2 0 . . . 0
. . . . . . . . . . . .
0 0 0 . . . ξm


m×m

,

FS =


ξm+1 0 0 . . . 0
0 ξm+2 0 . . . 0
. . . . . . . . . . . .
0 0 0 . . . ξn


(n−m)×(n−m)

,

with ξi > qi large enough such that for U ∈ Σ, Γi(U) ≥ 0, which will be determined
later. Then system (3.3) can be written as

−diu
′′
i (z) + cu′

i(z) + ξiui(z) = Γi(U)(z), (3.11)

for i = 1, 2, . . . n.
Let xi1 < 0 < xi2 be the two distinct roots of dix

2
i − cxi − ξi = 0, then xi =

xi2 − xi1 > 0. We define map Π = (Π1, . . . ,Πn)
T : Σ → Cσ(R,Rn) with Πi : Σ →

Cσ(R,R) given by

Πi(U)(z) =
1

dixi

[ ∫ z

−∞
exi1(z−s)Γi(U)(s)ds+

∫ ∞

z

exi2(z−s)Γi(U)(s)ds
]
,

then it holds

−diΠ
′′
i (z) + cΠ′

i(z) + ξiΠi(z) = Γi(U)(z). (3.12)

It is easy to see that any fixed point of Π is a solution of (3.11), which is a semi-
traveling wave solution of (3.2). On the other hand, a solution of (3.11) is a fixed
point of operator Π .

Lemma 3.6. The operator Π maps Σ into Σ and it is continuous and compact
with respect to the norm | · |σ in Bσ(R,Rn), where

Bσ(R,Rn) = {U(z) ∈ Cσ(R,Rn) : |U(·)|σ < ∞}.

Proof. We first prove that Π maps Σ into Σ. Indeed, if U(z) = (UI(z), US(z))
T ∈ Σ,

that is,

UI(z) ≤ UI(z) ≤ UI(z), US(z) ≤ US(z) ≤ US(z),

we need to prove that

ui(z) ≤ Πi(z) ≤ ui(z), i = 1, 2, . . . , n. (3.13)

Recall that, for i = 1, 2, . . . ,m,

ui(z) =

{
vie

λcz, z ≤ z1 = lnω
λc

,

viω, z > z1,

and

ui(z) =

{
vie

λcz(1− τeµz), z ≤ z3 = − ln τ
µ ,

0, z > z3,

where ω > 1, τ > 1, and 0 < µ < min{α, λc}, λc + µ < c
2d .

Now we prove that for i = 1, 2, . . . ,m, the left-hand side of (3.13) holds. Indeed,
if z > z3, we have ui(z) = 0. Since Γi(z) ≥ 0 implies that Πi(z) ≥ 0. Therefore, we
have ui(z) ≤ Πi(z).
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For z ≤ z3, from (3.10) in Lemma 3.5, we have

−diui
′′ + cui

′ + ξiui ≤ ξiui + fi(U)− δui
2

= ξiui +
( m∑
j=1

aijuj

)(
bi0 +

n∑
k=m+1

bikuk

)
− qiui − δui

2

= [(ξi − qi)ui − δui
2] +

( m∑
j=1

aijuj

)(
bi0 +

n∑
k=m+1

bikuk

)
.

Since h(x) = (ξi − qi)x− δx2 is increasing on (0, ξi−qi
2δ ) and for δ > 0 small enough,

for z ≤ z3,

ui(z) ≤ vie
λcz <

ξi − qi
2δ

.

Thus,

(ξi − qi)ui − δui
2 ≤ (ξi − qi)ui − δu2

i .

Hence,

−diui
′′ + cui

′ + ξiui ≤ [(ξi − qi)ui − δu2
i ] +

( m∑
j=1

aijuj

)(
bi0 +

n∑
k=m+1

bikuk

)
= Γi(U)(z).

It follows that

Πi(U)(z) =
1

dixi

[ ∫ z

−∞
exi1(z−s)Γi(U)(s)ds+

∫ ∞

z

exi2(z−s)Γi(U)(s)ds
]

≥ 1

dixi

[ ∫ z

−∞
exi1(z−s) +

∫ ∞

z

exi2(z−s)
]
[−diui

′′(s) + cui
′(s) + ξiui(s)]ds

=
1

dixi

∫ z

−∞
exi1(z−s)[−diui

′′(s) + cui
′(s) + ξiui(s)]ds

+

∫ z3

z

exi2(z−s)[−diui
′′(s) + cui

′(s) + ξiui(s)]ds

+

∫ ∞

z3

exi2(z−s)[−diui
′′(s) + cui

′(s) + ξiui(s)]ds

= ui(z) +
1

xi
exi2(z−z3)

[
ui

′(z3 + 0)− ui
′(z3 − 0)

]
≥ ui(z).

Thus, we have proved that, for i = 1, 2, . . . ,m, the left-hand side of (3.13) holds.
Next we prove that, for i = 1, 2, . . . ,m, the right-hand side of (3.13) holds. From
Lemma 3.3, we have

−diui
′′ + cui

′ + ξiui ≥ ξiui + fi(U)− δui
2

= ξiui +
( m∑

j=1

aijuj

)
(bi0 +

n∑
k=m+1

bikuk)− qiui − δui
2

= [(ξi − qi)ui − δui
2] +

( m∑
j=1

aijuj

)(
bi0 +

n∑
k=m+1

bikuk

)
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≥ [(ξi − qi)ui − δu2
i ] +

( m∑
j=1

aijuj

)(
bi0 +

n∑
k=m+1

bikuk

)
= Γi(U)(z).

It follows that

Πi(U)(z) =
1

dixi

[ ∫ z

−∞
exi1(z−s)Γi(U)(s)ds+

∫ ∞

z

exi2(z−s)Γi(U)(s)ds
]

≤ 1

dixi

[ ∫ z

−∞
exi1(z−s) +

∫ ∞

z

exi2(z−s)
]
[−diui

′′(s) + cui
′(s) + ξiui(s)]ds

=
1

dixi

∫ z

−∞
exi1(z−s)[−diui

′′(s) + cui
′(s) + ξiui(s)]ds

+

∫ ∞

z

exi2(z−s)[−diui
′′(s) + cui

′(s) + ξiui(s)]ds = ui(z).

Similarly, using the definitions of US(z) and US(z) and Lemma 3.4, we can prove
that for i = m+ 1,m+ 2, . . . , n, (3.13) holds. Therefore, Π(Σ) ⊂ Σ.

Next we prove that the operator Π is continuous with respect to the norm | · |σ
in Bσ(R,Rn). To do this, first, we take σ > 0 such that 0 < σ < min{−xi1, xi2, i =
1, 2, . . . n}.

For U = (u1(z), u2(z), . . . , un(z)) ∈ Σ and W = (w1(z), w2(z), . . . , wn(z)) ∈ Σ
and i = 1, 2, . . . ,m,

|Γi(U)(z)− Γi(W )(z)|e−σ|z|

= |ξiui + fi(U)− δu2
i − ξiwi − fi(W ) + δw2

i |e−σ|z|

≤ [ξi|ui − wi|+ δ|ui − wi||ui + wi|+ |fi(U)− fi(W )|]e−σ|z|

≤ [ξi|ui − wi|+ δ|ui − wi||ui + wi|+ qi|ui − wi|

+
∣∣∣( m∑

j=1

aijuj

)(
bi0 +

n∑
k=m+1

bikuk

)
−

( m∑
j=1

aijwj

)(
bi0 +

n∑
k=m+1

bikwk

)∣∣∣]e−σ|z|

= [(ξi + qi)|ui − wi|+ δ|ui − wi||ui + wi|

+
∣∣∣( m∑

j=1

aijuj

)(
bi0 +

n∑
k=m+1

bikuk

)
−

( m∑
j=1

aijwj

)(
bi0 +

n∑
k=m+1

bikuk

)
+
( m∑

j=1

aijwj

)(
bi0 +

n∑
k=m+1

bikuk

)
−
( m∑

j=1

aijwj

)(
bi0 +

n∑
k=m+1

bikwk

)∣∣∣]e−σ|z|

≤
[
(ξi + qi)|ui − wi|+ δ|ui − wi||ui + wi|

+
∣∣∣( m∑

j=1

aij(uj − wj)||
(
bi0 +

n∑
k=m+1

bikuk

))∣∣∣
+
∣∣∣ m∑
j=1

aijwj

∣∣∣ ∣∣∣ n∑
k=m+1

bik(uk − wk)|
]
e−σ|z|

≤ Li|U(·)−W (·)|σ,
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where Li is a positive constant depending on Qi, qi, aij , bik, vi, ξi, and the constants
in ui and ui, (i, j = 1, 2, . . . ,m, k = m+ 1, . . . , n). Then

|Πi(U)(z)−Πi(W )(z)|e−σ|z|

≤ e−σ|z|

dixi

[ ∫ z

−∞
exi1(z−s) +

∫ ∞

z

exi2(z−s)
]
|Γi(U)(z)− Γi(W )(z)|ds

≤ Lie
−σ|z|

dixi

[ ∫ z

−∞
exi1(z−s)+σ|s| ds+

∫ ∞

z

exi2(z−s)+σ|s| ds
]
|U(·)−W (·)|σ

=
Li

dixi

[ ∫ z

−∞
exi1(z−s)−σ|z|+σ|s| ds+

∫ ∞

z

exi2(z−s)−σ|z|+σ|s| ds
]
|U(·)−W (·)|σ

≤ Li

dixi

[ ∫ z

−∞
exi1(z−s)+σ|z−s| ds+

∫ ∞

z

exi2(z−s)+σ|z−s| ds
]
|U(·)−W (·)|σ

≤ Gi|U(·)−W (·)|σ,

where

Gi =
Li(xi1 − xi2 + 2σ)

dixi(xi1 + σ)(xi2 − σ)
> 0.

This implies

|Πi(U)(·)−Πi(W )(·)|σ ≤ Gi|U(·)−W (·)|σ.

Hence, Πi : Σ → C(R,R) is continuous with respect to the norm | · |σ in
Bσ(R,Rn). Similarly, we can prove that, for i = m + 1,m + 2, . . . , n, Πi : Σ →
C(R,R) is also continuous with respect to the norm | · |σ in Bσ(R,Rn). Therefore,
Π: Σ → Σ is continuous with respect to the norm | · |σ in Bσ(R,Rn).

Finally, we show that the operator Π is compact with respect to the norm | · |σ
in Bσ(R,Rn). Observe that, for U(z) = (u1(z), u2(z), . . . , un(z)) ∈ Σ, we have

0 ≤ ui(z) ≤ Ni,

where Ni depends on vi, λc, ω, τ , η, α, µ, qi, Qi. It follows that there is an Mi

depending on these parameters as well as ξi such that

0 ≤ Γi(U) ≤ Mi.

Thus,∣∣ d
dz

Πi(U)(z)
∣∣ = 1

dixi

∣∣∣[xi1

∫ z

−∞
exi1(z−s)ds+ xi2

∫ ∞

z

exi2(z−s)ds
]
Γi(U)(s)

∣∣∣
≤ Mi

dixi

[
|xi1|

∫ z

−∞
exi1(z−s)ds+ xi2

∫ ∞

z

exi2(z−s)ds
]

=
2Mi

dixi
,

which implies ∣∣ d
dz

Πi(U)(z)
∣∣
σ
≤ 2Mi

dixi
.

That is, | d
dzΠi(U)(z)|σ is bounded. This is true for all i = 1, 2, . . . , n. This means

that Π(Σ) is uniformly bounded and equicontinuous with respect to the norm | · |σ.
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For fixed positive integer k, define an operator Πk = (Πk
1 ,Π

k
2 , . . . ,Π

k
n) by

Πk(U)(z) =


Π(U)(−k) z ∈ (−∞,−k],

Π(U)(z) z ∈ [−k, k],

Π(U)(k) z ∈ [k,∞).

By Arzela-Ascoli theorem, Πk : Σ → Σ is compact with respect to the norm | · |σ
in Bσ(R,Rn).

For i = 1, 2, . . . , n, we have

|Πi(U)(z)| = 1

dixi

∣∣∣[ ∫ z

−∞
exi1(z−s)ds+

∫ ∞

z

exi2(z−s)ds
]
Γi(U)(s)

∣∣∣
≤ Mi

dixi

[ ∫ z

−∞
exi1(z−s)ds+

∫ ∞

z

exi2(z−s)ds
]

=
Mi

di|xi1xi2|
.

Therefore,

|Πk
i (U)(·)−Πi(U)(·)

∣∣
σ
= sup

z∈R

∣∣Πk
i (U)(z)−Πi(U)(z)

∣∣ e−σ|z|

= sup
|z|≥k

|Πk
i (U)(z)−Πi(U)(z)|e−σ|z|

≤ 2Mi

di|xi1xi2|
e−σk → 0

as k → ∞. This means that

|Πk(U)(·)−Π(U)(·)|σ → 0

as k → ∞. That is, Πk converges to Π in Σ with respect to the norm |·|σ. Therefore,
Π : Σ → Σ is compact with respect to the norm | · |σ in Bσ(R,Rn). □

Now we are ready to prove the existence of semi-traveling wave solution for
system (3.2)

Proposition 3.7. If R0 > 1, there exists c̃ > 0 such that for any c > c̃, system
(3.2) has a nonnegative bounded semi-traveling wave solution U(z) satisfying

lim
z→−∞

U(z) = E0.

Proof. For R0 > 1, from Lemma 3.2, there exists c̃ > 0 such that for any c > c̃,
there exists λc ∈ (0, c

2d ) with d = max1≤i≤m di and Vc = (v1, . . . , vm) with vi > 0

such that ΦI = (v1e
λcz, . . . , vmeλcz) satisfies (3.5). Then we can define

U(z) = (UI(z), US(z)),

U(z) = (UI(z), US(z))

so that they satisfy Lemmas 3.3-3.5. Then we define operator

Π(U)(z) = (Π1(U)(z), . . . ,Πn(U)(z)) : Σ → Σ

such that (3.12) holds. From Lemma 3.6, we know that Π(Σ) ⊂ Σ and it is
continuous and compact with respect to the norm | · |σ in Bσ(R,Rn). Therefore,
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from Shauder’s fixed point theorem, Π has a fixed point U(z) ∈ Σ, which satisfies
(3.3). It is easily seen that

lim
z→−∞

U(z) = lim
z→−∞

U(z) = E0.

It follows that limz→−∞ U(z) = E0. This completes the proof. □

Next we prove the existence of semi-traveling wave solutions of (1.2).

Theorem 3.8. If R0 > 1, then there exists c̃ > 0 such that for any c > c̃, system
(1.2) has a nonnegative bounded semi-traveling solution U(z) = (u1(z), . . . , un(z))
satisfying

lim
z→−∞

U(z) = E0.

If bii > 0 for i = m+1, . . . , n, and there is at least one 1 ≤ j ≤ m such that aij > 0,
then

ui(z) < u0
i .

For i = 1, . . . ,m, ui(z) > 0 and

lim
z→−∞

ui(z)e
−λcz = vi, lim

z→−∞
u′
i(z)e

−λcz = λcvi. (3.14)

Proof. For each positive integer k, in (3.3), set δ = δk = 1
k , we have δk ↓ 0 as

k → +∞. From Proposition 3.7, for each δk, (3.2) has a nonnegative bounded
semi-traveling wave solution

Uk(z) = (u1k(z), u2k(z), . . . , unk(z)) ∈ Σ

satisfying limz→−∞ Uk(z) = E0. From the proof of Lemma 3.6 and system (3.3),
{Uk(z)}∞k=1, {U ′

k(z)}∞k=1, and {U ′′
k (z)}∞k=1 are equicontinuous and uniformly bounded

in R. By Arzela-Ascoli theorem, there exists a subsequence {δkj} such that for some

U(z) = (U1(z), U2(z), . . . , Un(z)) ∈ Σ,

Ukj
(z) → U(z), U ′

kj
(z) → U ′(z), U ′′

kj
(z) → U ′′(z)

as j → ∞. Since Ukj (z) is a solution of (3.3), by taking kj → ∞ so that δkj → 0,
we know that U(z) satisfies the wave equations corresponding (1.2), that is,

cU ′
I = dIU

′′
I + fI(U),

cU ′
S = dSU

′′
S + fS(U).

(3.15)

Thus, U(z) is a nonnegative semi-traveling solution of (1.2) satisfying

lim
z→−∞

U(z) = E0.

Next, we show that ui(z) > 0 for i = 1, 2, . . .m. Since ui(z) = max{vieλcz(1 −
τeµz), 0}, for z < z3 = − ln τ

µ , ui(z) > 0, we have ui(z) ≥ ui(z) > 0. If there is a z0
such that ui(z0) = 0, then there are a and b such that a < z3 < b and z0 ∈ (a, b).
Thus, ui(z) attains its nonpositive minimum over [a, b] at z0. Notice that on (a, b),
ui(z) satisfies

−diu
′′
i + ciu

′
i = fi(U(z)),

or

−diu
′′
i + ciu

′
i + qiui =

( m∑
j=1

aijui

)(
bi0 +

n∑
k=m+1

uk

)
≥ 0,
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By the strong maximum principle for second order elliptic equations (see [7]), u ≡ 0
on (a, b). This is a contradiction since ui(z) > 0 for z ∈ (a, z3). Therefore, we must
have ui(z) > 0 for all z ∈ R. For i = m + 1,m + 2, . . . , n, we already know that
0 ≤ ui(z) ≤ u0

i . If, at some point z∗, ui(z
∗) = u0

i , then ui(z) attains its positive
maximum at z∗. Therefore, u′

i(z
∗) = 0, u′′

i (z
∗) ≤ 0. But, from (3.15), we have

diu
′′
i (z

∗) =
( m∑

j=1

aijuj(z
∗)
)( n∑

k=m+1

bikuk(z
∗)
)
≥

( m∑
j=1

aijuj(z
∗)
)
(biiui(z

∗)) > 0.

This is a contradiction. Therefore, we must have ui(z) < u0
i .

Finally, we prove (3.14). We know that the semi-traveling wave solution U(z)
satisfies

U(z) ≤ U(z) ≤ U(z).

For i = 1, 2, . . .m,

ui(z) =

{
vie

λcz, z ≤ z1 = lnω
λc

,

viω, z > z1,

and

ui(z) =

{
vie

λcz(1− τeµz), z ≤ z3 = − ln τ
µ ,

0, z > z3,

where ω > 1, τ > 1, and 0 < µ < min{α, λc}, λc + µ < c
2d . Therefore, for z < 0

with |z| large enough, we have

vie
λcz(1− τeµz) ≤ ui(z) ≤ vie

λcz.

That is,

vi(1− τeµz) ≤ ui(z)e
−λcz ≤ vi.

Thus,

lim
z→−∞

ui(z)e
−λcz = vi.

To prove that

lim
z→−∞

u′
i(z)e

−λcz = λcvi,

let us consider a nonnegative semi-traveling wave solution Uk(z) = (UIk(z), USk(z))
of the auxiliary system (3.2) with δ = δk = 1

k . Using that Uk(z) is a fixed point of
operator Πk and the definition of Π, it is easy to prove that

lim
z→−∞

u′
i(z) = 0, i = 1, 2, . . . , n.

For i = 1, 2, . . .m, integrating both sides of the i-th equation of (3.3) from −∞ to
z and using the facts that ui(−∞) = u′

i(−∞) = 0 reveal that

diu
′
i(z) = cui(z)−

∫ z

−∞
fi(U)(s)ds+ δk

∫ z

−∞
u2
i (s)ds.

Therefore,

lim
z→−∞

u′
i(z)e

−λcz

= lim
z→−∞

1

di

(
cui(z)e

−λcz − e−λcz

∫ z

−∞
fi(U)(s)ds+ δke

−λcz

∫ z

−∞
u2
i (s)ds

)
=

1

di

(
cvi − lim

z→−∞

∫ z

−∞ fi(U)(s)ds

eλcz
+ lim

z→−∞

δk
∫ z

−∞ u2
i (s)ds

eλcz

)
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=
1

di

(
cvi − lim

z→−∞

fi(U)(z)

λceλcz
+ lim

z→−∞

δku
2
i (z)dz

λceλcz

)
=

1

di

(
cvi − lim

z→−∞

e−λczfi(U)(z)

λc
+ lim

z→−∞

δke
−λczu2

i (z)dz

λc

)
=

1

di

(
cvi −

(
∑m

j=1 aijvj)(bi0 +
∑n

k=m+1 biku
0
k)− qivi

λc

)
=

λcdivi
di

= λcvi

In the last equality we used (3.6). This completes the proof. □

4. Nonexistence of traveling wave solutions

The existence of semi-traveling wave solutions starting from the disease-free equi-
librium E0 means that the disease will spread among the population. The sufficient
conditions to have these semi-traveling wave solutions that we proved are R0 > 1
and c > c̃ with c̃ > 0 depending on parameters in the system, especially on the
diffusion coefficients of those infected subclasses. This implies that the speed of
population movement will affect the outbreak of the disease. The question is what
condition will guarantee the nonexistence of semi- traveling wave solutions? For
this we have the following result.

Theorem 4.1. If R0 < 1, then for any c > 0, model (1.2) has no nonnegative
nontrivial bounded semi-traveling wave solution satisfying (3.1).

Proof. If R0 < 1, suppose that (1.2) has a nonnegative nontrivial bounded semi-
traveling wave solution U(z) = (u1(z), u2(z), . . . , un(z)) satisfying (3.1). Without
loss of generality, we can assume that 0 ≤ ui(z) ≤ u0

i for i = m + 1, . . . , n. Oth-
erwise, we can rescale the solution so that this is true. Since R0 = ρ(EQ−1) =
ρ(Q−1E) < 1, by Perron-Frobenius theorem, there exists aW = (w1, w2, . . . , wm) ∈
Rm with wi > 0 (i = 1, 2, . . .m) such that

(Q−1E)W = R0W. (4.1)

Observe that, for i = 1, 2, . . .m, ui(z) satisfies

cu′
i = diu

′′
i + fi(U).

It can be written as

diu
′′
i + cu′

i + qiui = Ai(z)Bi(z) =
( m∑

j=1

aijuj

)(
bi0 +

n∑
k=m+1

bikuk

)
. (4.2)

Let λi
1,2 be the roots of −diλ

2 + cλ+ qi = 0, that is,

λi
1,2 =

c±
√
c2 + 4diqi
2di

,

then (4.2) can be converted to

ui(z) =
1

Λi

[ ∫ z

−∞
eλ

i
2(z−s)Hi(s) ds+

∫ ∞

z

eλ
i
1(z−s)Hi(s) ds

]
, (4.3)
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where Λi = λi
1 − λi

2 > 0 and Hi(s) = Ai(s)Bi(s). From (4.3) and the assumption
0 ≤ ui(z) ≤ u0

i , i = m+ 1,m+ 2, . . . , n, we obtain

0 ≤ ui(z)

=
qi
Λi

[ ∫ z

−∞
eλ

i
2(z−s) 1

qi
Hi(s) ds+

∫ ∞

z

eλ
i
1(z−s) 1

qi
Hi(s) ds

]
≤ (Q−1E)i

qi
Λi

[ ∫ z

−∞
eλ

i
2(z−s)uI(s) ds+

∫ ∞

z

eλ
i
1(z−s)uI(s) ds

]
,

(4.4)

where (Q−1E)i (i = 1, 2, . . . ,m) denotes the i-th row of the matrix Q−1E and
uI(s) = (u1(s), u2(s), . . . , um(s))T .

Let u∗
i = supz∈R ui(z) for i = 1, 2, . . . ,m. Then u∗ = (u∗

1, u
∗
2, . . . , u

∗
m)T ≥ 0 and

u∗ ̸= 0. By taking supremum on the both sides of (4.4), we obtain

u∗ ≤ (Q−1E)u∗ (4.5)

Since W is positive, there exists a positive constant ν > 0 such that

u∗ ≤ νW (4.6)

Using (4.5), (4.6), and (4.1) gives us

u∗ ≤ (Q−1E)νW = ν(Q−1E)W = νR0W. (4.7)

Using (4.5), (4.7), and (4.1) leads to u∗ ≤ νR2
0W. Continuing this process results

in

0 ≤ u∗ ≤ νRm
0 W

for all positive integer m. Taking limit m → ∞, since R0 < 1, leads to u∗ = 0.
This is a contradiction. This completes the proof. □

5. Discussion

To investigate the influence of the mobility of population on the spread of disease,
we propose and study a very general epidemic model which inculdes a large class of
epidemic models that possess a disease-free equilibrium. Inspired by some specific
models, we introduced basic reproduction number R0. It turns out that the basic
reproduction number R0 is a threshold in the sense that the disease vanishes if
R0 < 1 and spreads if R0 > 1.

We introduced a critical wave speed c̃ and established the existence of semi-
traveling wave solutions that start from the disease- free equilibrium for c > c̃ > 0.
In order to investigate the final state of the disease, we need to establish the exis-
tence of traveling wave solution. To do this, we need to impose more restrictions on
the model to guarantee the existence of another nontrivial steady state equilibrium
and the semi-traveling wave solutions whose existence we established also connect
this steady state.

As we mentioned before, this model is neither cooperative nor competitive. For
these models, as the one investigated in [19], the spreading speed may be greater
than the minimal wave speed. In a future work, we will investigate the relationship
among the critical wave speed, the minimal wave speed, and the spreading speed.
This is to prove that the critical wave speed introduced here is the same as the
minimal wave speed. Besides proving the existence of traveling wave solution for
c > c̃, we also need to prove that, for R0 > 1 and c < c̃, there is no traveling wave
solution.
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In our model, all the parameters are constants. If this is not the case, the
behavior of the disease will be very different. This is another direction of a future
work.
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