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ASYMPTOTIC STABILITY FOR HILFER-LIKE NABLA

NONLINEAR FRACTIONAL DIFFERENCE EQUATIONS

ANSHUL SHARMA, SUYASH NARAYAN MISHRA, ANURAG SHUKLA

Abstract. This article examines the asymptotic stability of nonlinear frac-
tional difference equations with a Hilfer-like nabla operator. The results for

a Hilfer-type nabla fractional difference that contains Riemann-Liouville and

Caputo nabla difference as a particular case. We use Picard’s iteration and a
fixed point theorem to obtain results on existence and uniqueness. To obtain

the main results, we use linear a scalar fractional difference equality, discrete

comparison principle, and basics of difference equations. We also present a
Lyapunov second direct method for nonlinear discrete fractional systems. We

also discus stability results with some numerical examples.

1. Introduction

Fractional calculus is a field within mathematical analysis that explores the
derivatives and integrals of non-integer orders and their applications in numer-
ous scientific domains, including engineering and economics. Fractional Calculus
(FC) emerged as a brilliant concept conceived by Gottfried Leibnitz towards the
close of the seventeenth century and also has an essential role in science and engi-
neering fields [7, 15, 17, 18, 19, 22, 25]. Discrete fractional calculus is a branch of
mathematics that extends the concepts of traditional calculus to deal with discrete-
time systems or signals with fractional orders. Unlike classical calculus, which deals
with integer-order derivatives and integrals, discrete fractional calculus allows for
the analysis of systems or signals with non-integer order dynamics, providing a more
comprehensive understanding of complex phenomena encountered in various fields
such as signal processing, control theory, and time series analysis. In the case of
discrete fractional calculus, we cannot use the ϵ− δ definition directly to prove the
stability i.e. we can not provide the results or numerical methods for proving stabil-
ity in the nonlinear fractional difference equations. In 1892, Lyapunov constructed
the Lyapunov stability criteria. Lyapunov provides a method which is useful for
checking the stability of nonlinear systems [16, 21, 26]. In [8] authors introduced a
general method for finding quadratic Lyapunov functions in the stability analysis
of many continuous fractional order systems. The basic idea of discrete stability of
fractional systems is discussed in book [6]. In [23, 24] authors defined a diamond
ϑ-derivative which is the linear combination of the standard ∇ and ∆ derivative on
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the time scale. In [2] Anderson and Onitsuka investigated the Lyapunov stability
analysis of the equilibrium solution in the discrete homogeneous linear first-order
diamond-alpha derivative equation.

⋄ϑη(ω) = λη(ω), ⋄ϑη(ω) = ϑ∆hη(ω) + (1− ϑ)∇hη(ω), ϑ ∈ [0, 1],

where λ ∈ C and I = [ω0,∞]hZ and h is step-size h ∈ R, hZ = {hn : n ∈ Z}.
Atici and Eloe [3, 4, 9, 12], Miller and Ross [20] and Anastassiou [1] introduced
Liouville and Caputo nabla fractional difference and defined several properties. In
[27] Wu, Baleanu and Luo found a alternative method to investigate the stability
of the following nonlinear equations

∇ν
mη(ω) = ξ(ω, η(ω)), η(m+ 1) = C, 0 < ν < 1, ω ∈ Nm+2,

where ∇ν
mη(ω) is the Riemann-Liouville difference of η(ω). In [5] Wu, Baleanu and

Luo analyze the stability of the following Caputo-like discrete fractional systems

C
h∆

ν
mη(ω) = ξ(ω + νh, η(ω + νh)), 0 < ν ≤ 1,

where C
h∆

ν
mη(ω) denotes the Caputo-like delta fractional h-difference of η(ω) on

the sets of discrete time (hN)m+(1−ν)h = {m+(1−ν)h,m+(2−ν)h, · · · , }. In [14]
the authors introduced the Linear Hilfer nabla fractional difference which includes
Riemann-Liouville and Caputo nabla difference as a particular cases and defined
the asymptotical behaviour of the solution. Discrete Hilfer fractional difference is a
mathematical concept used in the analysis of discrete-time signals or systems. It is
an extension of the traditional difference operator to non-integer orders, allowing for
the characterization of signals with fractional dynamics. In [14] Mohan and Gopal
derive the Volterra summation equation to solve an initial value problem for the
class of nonlinear Hilfer Nabla difference equations. The authors demonstrated the
existence of stable solutions for the nonlinear Cauchy problem in [11] by utilizing
the compact method and fixed point technique. In [13] the authors presented two
nonlinear nabla variable-order models and proved their asymptotic stability. After
this in the last several years researchers gives a vigorous theory of fractional calculus
of a real variables. In this article we investigate the uniqueness and existence of
the Hilfer-like fractional nonlinear discrete dynamical system in two ways: first, by
the Picard iteration method, and second, by fixed point theorem, which utilizes
the compactness property. After this we continue the work done by the authors in
[14, 27, 5, 28] and discuss the Lyapunov theory for the asymptotic stability of the
Hilfer-type nabla fractional difference equation. We consider the following nonlinear
equation

(∇ϑ,ρ
m η)(ω) = ξ(ω, η(ω)), ω ∈ Nm+1

[(∇−(1−γ)
m η)(ω)]ω=m = η(m) = η0

(1.1)

where 0 < ϑ ≤ 1, 0 ≤ ρ ≤ 1, γ = ϑ+ ρ− ϑρ, ξ : Nm × R → R is the nonlinearity.

Motivations and contributions.

• Existence and uniqueness using Picard’s iteration method and fixed point
theorem.

• Linear scalar fractional difference inequalities are employed.
• The Lyapunov second direct method is suggested for analyzing nonlinear
discrete fractional systems.
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• To investigate the asymptotic stability properties of nonlinear fractional
difference equations, numerical examples with simulation results are dis-
cussed using the well known Lyapunov direct method and Newton iteration
method.

The plan for this article is follows: In Section 2, contains preliminaries on discrete
fractional calculus. In section 3, we discuss some basics notation of Hilfer nabla
fractional difference and their properties. In section 4, we provide some inequalities,
discrete comparison principle and method for Lyapunov stability of the nonlinear
fractional difference equation. In section 5, we discuss asymptotic stability with
some numerical examples using Lyapunov direct method and Newton’s iteration
method.

2. Preliminaries

Let R be the set of real numbers, and Nm as the set {m,m + 1,m + 2, · · · } for
any m ∈ R. It is assumed that empty sums equate to 0 and empty products equate
to 1.

Definition 2.1 ([14]). Consider µ belonging to the set of real numbers, excluding
values in the set {· · · ,−2,−1}. The µth order nabla fractional Taylor monomial is
expressed as follows:

Hµ(ω,m) =
(ω −m)µ̄

Γ(µ+ 1)
=

Γ(ω −m+ µ)

Γ(ω −m)Γ(µ+ 1)
,

provided the right-hand side exists. Γ(·) is the Euler gamma function. Let η :
Nm → R and N ∈ N1. The first order backward (nabla) difference of η is defined
by (∇η)(ω) = η(ω) − η(ω − 1) for ω ∈ Nm+1, and the N th−order nabla difference
of η defined recursively by (∇Nη)(ω) = (∇(∇N−1η))(ω) for ω ∈ Nm+N .

Definition 2.2 ([14]). Consider a function η : Nm → R and let ν > 0. The
νth−order nabla sum of η is defined as follows

(∇−ν
m η)(ω) =

ω∑
s=m

Hν−1(ω, ζ(s))η(s), ω ∈ Nm,

where ζ(s) = s− 1.

Definition 2.3 ([14]). Given a function η : Nm → R, ν > 0 and select N ∈ N1

such that N − 1 < ν ≤ N . The νth−order Riemann-Liouville nabla difference of η
is defined by

(∇ν
mη)(ω) = (∇N (∇−(N−ν)

m η))(ω), ω ∈ Nm+N .

Definition 2.4 ([14]). Consider a function η : Nm−N → R, ν > 0 and select
N ∈ N1 such that N − 1 < ν ≤ N . The νth−order Caputo nabla difference of η is
defined as follows

(∇ν
∗mη)(ω) = (∇−(N−ν)

m (∇Nη)(ω)), ω ∈ Nm.

Lemma 2.5 ([10, 14]). Let η : Nm → R, ν and µ both are greater than 0. In this
case,

(∇−ν
m ∇−µ

m η)(ω) = (∇−ν−µ
m η)(ω), ω ∈ Nm, (2.1)

(∇−ν
m+1∇η)(ω) = (∇∇−ν

m η)(ω)−Hν−1(ω, ζ(m))η(m), ω ∈ Nm+1. (2.2)
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Lemma 2.6 ([14, 10]). The well-definedness of the following fractional nabla Taylor
monomials is established.
1. Consider ν > 0 and µ ∈ R. In this scenario,

∇−ν
m Hν(ω, ζ(m)) = Hν+µ(ω, ζ(m)), ω ∈ Nm.

2. Consider ν, µ ∈ R and ω ∈ N1 such that N − 1 < ν ≤ N . Then

∇ν
mHµ(ω, ζ(m)) = Hν−µ(ω, ζ(m)), ω ∈ Nm+N .

3. Hilfer nabla fractional difference

First, we provide the Hilfer fractional derivative’s nabla equivalent.

Definition 3.1 ([14, 10]). Consider the function η : Nm → R, 0 ≤ ρ ≤ 1, and
choose N ∈ N1 such that N − 1 < ϑ ≤ N . The ϑth−order and ρth−type Hilfer
nabla difference of η is defined by

((∇ϑ,ρ
m )η)(ω) = (∇−ρ(N−ϑ)

m+N ∇N∇−(1−ρ)(N−ϑ)
m η)(ω), ω ∈ Nm+N .

The type ρ enables continuous interpolation between the Riemann-Liouville case
and the Caputo case respectively such that ∇ϑ,0

m ≡ ∇ϑ
m and ∇ϑ,1

m ≡ ∇ϑ
∗m.

Remark 3.2 ([14, 10]). A function η defined on Nm with values in R, then

(∇−(1−ρ)(N−ϑ)
m η) : Nm → R,

implying that

(∇N∇−(1−ρ)(N−ϑ)
m η) : Nm+N → R,

(∇−ρ(N−ϑ)
m+N ∇N∇−(1−ρ)(N−ϑ)

m η) : Nm+N → R.

So, if η : Nm → R, then (∇ϑ,ρ
m ) : Nm+N → R.

Proposition 3.3 ([14] Power Rule). Let ν ∈ R, 0 < ϑ ≤ 1, 0 ≤ ρ ≤ 1, and assume
that the following fractional nabla Taylor monomials are well defined. Then

∇ϑ,ρ
m Hµ(ω, ζ(m)) = Hµ−ϑ(ω, ζ(m))−Hρ(1−ϑ)−1(ω, ζ(m)), ω ∈ Nm+1.

Proposition 3.4 ([14] Composition Rule). Suppose η : Nm → R, where 0 < ϑ ≤
1, 0 ≤ ρ ≤ 1 and γ = ϑ+ ρ− ϑρ. Then

(1) (∇ϑ,ρ
m η)(ω) = (∇−ρ(1−ϑ)

m+1 ∇γ
mη)(ω), ω ∈ Nm+1.

(2) (∇−γ
m+1∇γ

mη)(ω) = (∇−ϑ
m+1∇ϑ,ρ

m η)(ω), ω ∈ Nm+1.

(3) (∇γ
m∇−ϑ

m η)(ω) = (∇ρ(1−ϑ)
m η)(ω), ω ∈ Nm+1.

(4) (∇ϑ,ρ
m ∇−ϑ

m η)(ω) = (∇−ρ(1−ϑ)
m+1 ∇ρ(1−ϑ)

m η)(ω), ω ∈ Nm+1.

Let us examine the initial value problem

(∇ϑ,ρ
m η)(ω) = ξ(ω, η(ω)), ω ∈ Nm+1

[(∇−(1−γ)
m η)(ω)]ω=m = η(m) = η0,

where 0 < ϑ ≤ 1, 0 ≤ ρ ≤ 1, and γ = ϑ+ ρ− ϑρ, with ξ : Nm × R → R.

Theorem 3.5 ([14]). η satisfies the initial value problem (1.1) if, and only if, η is
a solution of the Volterra summation equation

η(ω) = η0Hγ−1(ω, ζ(m)) +

ω∑
s=m+1

Hϑ−1(ω, ζ(s))ξ(s, η(s)), ω ∈ Nm. (3.1)
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Let us consider the following assumptions:

(H1) Let ξ(ω, η(ω)) satisfies the Lipschitz condition

|ξ(ω, η1)− ξ(ω, η2)| ≤ A|η1 − η2|,

where 0 < A < 1 is a independent of ω.
(H2) If there exists a constant M > 0 such that |ξ(ω, η(ω))| ≤ M for ω ∈ N1.

Theorem 3.6. Let ξ(ω, η(ω)) be a nonlinear function which satisfies the assump-
tion (H1), (H2). Then the fractional difference equation (1.1) has at least one
solution.

Proof. Define the sequence {gn(·) : n ∈ N0}, g0 = (ω−m+1)(γ−1)

Γ(γ) η(m), for ω ∈ Nm,

gn(ω) =
(ω −m+ 1)(γ−1)

Γ(γ)
η(m) +

1

Γ(ϑ)

ω∑
s=m+1

(ω − ζ(s))(ϑ−1)ξ(s, gn−1(s)),

ω ∈ Nm, n ∈ N0 Clearly, by induction, we have |gn−gn−1| ≤ An−1M
Γ(nϑ+1) (ω−m+1)(nϑ).

Clearly, by induction, we have

|gn(ω)− gn−1(ω)| ≤ MAn−2 (ω −m+ 1)(n−1)ϑ

Γ(nϑ+ 1)

In fact, for n = 1, by condition (H1) we can conclude that

|g1(ω)− g0(ω)| =
1

Γ(ϑ)

ω∑
s=m+1

(ω − ζ(s))(ϑ−1)ξ(s, g0(s))

≤ 1

Γ(ϑ)

ω∑
s=m+1

(ω − ζ(s))(ϑ−1)M

≤ M

Γ(ϑ+ 1)
(ω −m+ 1)ϑ.

Without loss of generality, we assume that

|gn−1(ω)− gn−2(ω)| ≤ MAn−2 (ω −m+ 1)(n−1)ϑ

Γ((n− 1)ϑ+ 1)
.

Then

|gn(ω)− gn−1(ω)| ≤
A

Γ(ϑ)

ω∑
s=m+1

(ω − ζ(s))(ϑ−1)MAn−2 (s−m+ 1)(n−1)ϑ

Γ((n− 1)ϑ+ 1)

=
MAn−1

Γ(nϑ+ 1)
∇−ϑ

a (ω −m+ 1)nϑ

= MAn−1 (ω −m+ 1)nϑ

Γ(nϑ+ 1)
.

Set

g(t) = lim
n→∞

(gn(ω)− g0(ω)) + g0(ω) =

∞∑
k=1

(gk(ω)− gk−1(ω)) + g0(ω).
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Since the series M
A

∑∞
k=1 A

k (ω−m+1)nϑ

Γ(nϑ+1) is absolutely convergence for 0 < A < 1, the

existence of the solution for the fractional difference equation (1.1) is proved. The
proof is complete. □

Let Z be the set of all real sequences η = {η(ω)}Tω=m with ∥η∥ = supω∈NT
m
|η(ω)|

is a Banach space. We define an operator A : Z → Z as follows:

Aη(ω) = η0Hγ−1(ω, ζ(m)) +

ω∑
s=m+1

Hϑ−1(ω, ζ(s))ξ(s, η(s)), ω ∈ Nm. (3.2)

The fixed points of A are identical to the solutions of problem (1.1).

Theorem 3.7. Let g : [m,T ]Nm
→ R be a bounded function such that |ξ(ω, η)| ≤

g(ω)|η|. Then (1.1) has at least one solution on Z, provided that

L∗ ≤ Γ(ϑ+ 1)

(T −m+ 1)ϑ
,

where L∗ = supω∈NT
m
g(ω).

Proof. For a positive numberM , we define the setW = {η : ∥η−η0Hγ−1(ω, ζ(m))∥ ≤
M , for ω ∈ NT

m. We have to show that A maps W into itself. For η ∈ W , we have

|Aη(ω)− η0Hγ−1(ω, ζ(m))| ≤ g(ω)

ω∑
s=m+1

Hϑ−1(ω, ζ(s))|η(s)|

≤ L∗ sup
ω∈NT

m

|η(ω)|
ω∑

s=m+1

Hϑ−1(ω, ζ(s))

≤ L∗∥η∥ (ω −m+ 1)ϑ

Γ(ϑ+ 1)

≤ L∗∥η∥ (T −m+ 1)ϑ

Γ(ϑ+ 1)
≤ M.

We have ∥Aη∥ ≤ M . It follows that A is self map. Therefore, according to
Brouwer’s fixed point theorem, A has at least one fixed point. □

Theorem 3.8. For K > 0 and η1, η2 ∈ Z, assume that |ξ(ω, η1) − ξ(ω, η2)| ≤
K|η1 − η2| for all ω ∈ [m,T ]Nm

. Then (1.1) has a unique solution on Z, provided
that

K ≤ Γ(ϑ+ 1)

(T −m+ 1)ϑ
. (3.3)

Proof. Let η1, η2 ∈ Z and ω ∈ [m,T ]Nm . By assumption we have

|Aη1(ω)−Aη2(ω)| ≤ |
ω∑

s=m+1

Hϑ−1(ω, ζ(s))∥ξ(ω, η1)− ξ(ω, η2)|

≤ (ω −m+ 1)ϑ

Γ(ϑ+ 1)
K|η1 − η2|.

Taking the supremum on both sides we have

sup
ω∈NT

m

|Aη1(ω)−Aη2(ω)| ≤ K
(T −m+ 1)ϑ

Γ(ϑ+ 1)
∥η1 − η2∥.
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By using equation (3.3), we obtain ∥Aη1 − Aη2∥ ≤ ∥η1 − η2∥, from which it fol-
lows that A is contraction mapping. Therefore, according to Banach’s fixed point
theorem A has a unique fixed point. □

Lemma 3.9. Let η : Nm → R, 0 ≤ ρ ≤ 1, and 0 < ϑ ≤ 1. The ϑth−order and
ρth−type Hilfer nabla difference of η is defined by

(∇ϑ,ρ
m η)(ω) = (∇−ρ(1−ϑ)

m+1 ∇∇−(1−ρ)(1−ϑ)
m η)(ω), ω ∈ Nm+1.

Then

(∇ϑ,ρ
m η)(ω) = (∇ϑ

mη)(ω)−Hρ(1−ϑ)−1(ω, ζ(m))(∇−(1−γ)
m η)(m), (3.4)

where γ = ϑ+ ρ− ϑρ.

Proof. Evidently, 0 < γ ≤ 1, Lemma 2.5 and equation (2.2) support this assertion.
Consider

(∇ϑ,ρ
m η)(ω)

= (∇−ρ(1−ϑ)
m+1 ∇∇−(1−ρ)(1−ϑ)

m η)(ω)

= (∇∇−ρ(1−ϑ)
m ∇−(1−ρ)(1−ϑ)

m η)(ω)−Hρ(1−ϑ)−1(ω, ζ(m))(∇−(1−ρ)(1−ϑ)
m η)(m)

= (∇1−ρ(1−ϑ)
m ∇−(1−ρ)(1−ϑ)

m η)(ω)−Hρ(1−ϑ)−1(ω, ζ(m))(∇−(1−γ)
m η)(m)

= (∇ϑ
mη)(ω)−Hρ(1−ϑ)−1(ω, ζ(m))(∇−(1−γ)

m η)(m).

□

Lemma 3.10. For each discrete time ω ∈ Nm+1, where 0 < ϑ ≤ 1, 0 ≤ ρ ≤ 1 and
γ = ϑ+ ρ− ϑρ, the inequality involving Hilfer difference holds

(∇ϑ,ρ
m

η2

2
)(ω) ≤ η(ω)(∇ϑ,ρ

m η)(ω),

provided η(ω) ≤ 1
2η(m), ω ∈ Nm+1.

Proof. Note that

η(ω)(∇ϑ,ρ
m η)(ω)− (∇ϑ,ρ

m

η2

2
)(ω)

= η(ω)(∇ϑ
mη)(ω)− η(ω)Hρ(1−ϑ)−1(ω, ζ(m))η(m)

− (∇ϑ
m

η2

2
)(ω) +Hρ(1−ϑ)−1(ω, ζ(m))

η2

2
(m).

Using [27, Lemma 3.9], η(ω)(∇ϑ,ρ
m η)(ω) − (∇ϑ,ρ

m
η2

2 )(ω) ≥ 0 when η(ω) ≤ 1
2η(m),

ω ∈ Nm+1. □

4. Stability theorems

The stability analysis of fractional differential equations has been explored exten-
sively. In their study, the authors utilized Laplace transforms to derive a Mittag-
Leffler solution. However, it is crucial to note that continuity in solutions does
not persist in fractional difference equations, thus hindering the use of traditional
mathematical analysis tools to assess the asymptotic behavior of these equations.
Therefore, alternative methodologies are required to investigate stability. To be-
gin, let’s revisit some stability definitions pertinent to discrete systems in nonlinear
dynamics.
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Definition 4.1 ([27]). Let for η∗ = (η1(ω), · · · , ηN (ω))T , denote a vector function
at time ω ∈ Nm+1, consider the equilibrium point η = 0.

∇ϑ,ρ
ω0

η∗(ω) = ξ(ω, η∗(ω)), η∗(ω0) = C, 0 < ϑ ≤ 1, 0 ≤ ρ ≤ 1, ω ∈ Nω0+1.

The equilibrium point is said to be stable if for all ϵ > 0 there exits a δ = δ(ω0, ϵ) > 0
such that if ∥η∗(ω0)∥ < δ then ∥η∗(ω)∥ < ϵ, for all ω > ω0, ω ∈ Nω0

.

Definition 4.2 ([27]). An equilibrium point is asymptotically stable if for all ϵ > 0
there exits a, δ = δ(ω0) > 0 such that ∥η∗(ω0)∥ < δ implies limω→∞ η∗ = 0,
ω ∈ Nω0

.

Using the discrete fractional Lyapunov direct technique, we examine the stability
of equation (1.1). For simplicity, we assume ω0 = m in the remainder of the work.

Lemma 4.3. Let η(m), η(m+ 1) > 0, η(ω) is a solution of

(∇ϑ,ρ
m η)(ω) = λη(ω), ω ∈ Nm+1, 0 < ϑ ≤ 1, 0 ≤ ρ ≤ 1, (4.1)

and 0 ≤ λ < 1 then η(ω) > 0 for all ω ∈ Nm+1.

Proof. Using Theorem 3.5, we have

η(ω) = η0Hγ−1(ω, ζ(m)) + λ

ω∑
s=m+1

Hϑ−1(ω, ζ(s))η(s)

η(ω) = η0Hγ−1(ω, ζ(m)) + λ

ω−1∑
s=m+1

Hϑ−1(ω, ζ(s))η(s) + λHϑ−1(ω, ζ(ω))η(ω)

η(ω) = η0Hγ−1(ω, ζ(m)) + λ

ω−1∑
s=m+1

Hϑ−1(ω, ζ(s))η(s) + λη(ω)

(1− λ)η(ω) = η0Hγ−1(ω, ζ(m)) + λ

ω−1∑
s=m+1

Hϑ−1(ω, ζ(s))η(s)

η(ω) =
η0

1− λ
Hγ−1(ω, ζ(m)) +

λ

1− λ

ω−1∑
s=m+1

Hϑ−1(ω, ζ(s))η(s)

η(ω) =
η0

1− λ

Γ(ω −m+ γ)

Γ(ω −m+ 1)Γ(γ)
+

λ

1− λ

ω−1∑
s=m+1

Γ(ω − s+ ϑ)

Γ(ω − s+ 1)Γ(ϑ)
η(s).

Considering the conditions 0 ≤ λ < 1, Γ(ω−m+γ)
Γ(ω−m+1)Γ(γ) > 0 and Γ(ω−s+ϑ)

Γ(ω−s+1)Γ(ϑ) > 0 for

s = m + 1, . . . , ω − 1, we can conclude that if η(m + 1) > 0, then η(m + 2) > 0.
Subsequently, this leads to the inference that η(ω) > 0 for all ω ∈ Nm+1. □

Lemma 4.4. Let η(ω) and ν(ω) satisfy

(∇ϑ,ρ
m η)(ω) = λη(ω), ω ∈ Nm+1, 0 < ϑ ≤ 1, 0 ≤ ρ ≤ 1, (4.2)

and the inequality

(∇ϑ,ρ
m ν)(ω) ≤ λν(ω), ω ∈ Nm+1, (4.3)

respectively. If 0 ≤ λ < 1 and η(m + 1) = ν(m + 1) > 0, then ν(ω) ≤ η(ω) for
ω ∈ Nm+1.
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Proof. Using Theorem 3.5, we have

η(ω) =
η0

1− λ
Hγ−1(ω, ζ(m)) +

λ

1− λ

ω−1∑
s=m+1

Hϑ−1(ω, ζ(s))η(s)

η(ω) =
η0

1− λ

Γ(ω −m+ γ)

Γ(ω −m+ 1)Γ(γ)
+

λ

1− λ

ω−1∑
s=m+1

Γ(ω − s+ ϑ)

Γ(ω − s+ 1)Γ(ϑ)
η(s),

and

ν(ω) ≤ η0
1− λ

Hγ−1(ω, ζ(m)) +
λ

1− λ

ω−1∑
s=m+1

Hϑ−1(ω, ζ(s))ν(s)

ν(ω) ≤ η0
1− λ

Γ(ω −m+ γ)

Γ(ω −m+ 1)Γ(γ)
+

λ

1− λ

ω−1∑
s=m+1

Γ(ω − s+ ϑ)

Γ(ω − s+ 1)Γ(ϑ)
ν(s).

If we set ω = m + 2 we can establish that ν(m + 2) ≤ η(m + 2). Assuming the
inequality holds true for ν(m+ k) ≤ η(m+ k) for n = m+ k, k > 2, then through
the application of the principle of induction, we can readily demonstrate that the
inequality remains valid for n = m+ k + 2, where k > 2. □

Lemma 4.5 (Discrete comparison principle). For 0 < ϑ ≤ 1, 0 ≤ ρ ≤ 1 and
γ = ϑ+ ρ− ϑρ, if ∇ϑ,ρ

m y(ω) ≤ ∇ϑ,ρ
m x(ω), for all ω ∈ Nm+1 and x(m) = y(m), then

y(ω) ≤ x(ω).

Proof. Let F (ω) = x(ω)− y(ω). Given

∇ϑ,ρ
m x(ω) ≥ ∇ϑ,ρ

m y(ω),

∇ϑ,ρ
m F (ω) ≥ 0.

We apply ∇−ϑ
m+1 on both side to obtain

∇−ϑ
m+1∇ϑ,ρ

m F (ω) ≥ 0.

Using Proposition 3.4(2),

(∇−γ
m+1∇γ

mF )(ω) ≥ 0,

∇−γ
m+1∇(∇−(1−γ)

m F )(ω) ≥ 0.

By using Lemma 3.9,

(∇∇−γ
m ∇−(1−γ)

m F )(ω)−Hγ−1(ω, ζ(m))(∇(1−γ)
m F )(m) ≥ 0,

(∇∇−γ
m ∇−(1−γ)

m F )(ω) ≥ 0, F (ω) ≥ 0;

therefore, x(ω) ≥ y(ω). □

Theorem 4.6. Let η = 0 be an equilibrium point of (1.1). If there exits a positive
definite and decrescent scalar function V (ω, η(ω)) and discrete class-K functions
γ1, γ2 and γ3 such that

γ1(∥η(ω)∥) ≤ V (ω, η(ω)) ≤ γ2(∥η(ω)∥), ω ∈ Nm+1, (4.4)

∇ϑ,ρ
m V (ω, η(ω)) ≤ −γ3(∥η(ω)∥), ω ∈ Nm+2, (4.5)

then the equilibrium point is asymptotically stable.
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Proof. From the inequalities we obtain

∥η(ω)∥ ≥ γ−1
2 (V (ω, η(ω))),

∇ϑ,ρ
m V (ω, η(ω)) ≤ −γ3(γ

−1
2 (V (ω, η(ω))), ω ∈ Nm+2,

where γ−1
2 is the inverse of the discrete class-K function γ2. We construct a frac-

tional difference equation

∇ϑ,ρ
m U(ω) = −γ3(γ

−1
2 (U(ω))), U(m+ 1) = V (m+ 1, η(m+ 1)) > 0.

V (ω, η(ω)) is bounded by the solution U(ω), according to Lemma 4.3, V (ω, η(ω))
is a positive scalar function. We can derive limω→∞ V (ω, η(ω)) = 0 according to
Lemma 4.3 and 4.4. Since γ1 is discrete class function, we derive that limω→∞ η(ω) =
0. □

Theorem 4.7. If η(ω)ξ(ω, η(ω)) < 0 and η(ω) ≤ η(m)
2 . Then discrete equation

(1.1) is asymptotically stable.

Proof. Let us consider the Lyapunov function V = η2(ω)
2 . Using Lemma 3.10 we

can estimate the fractional derivative of V ,

∇ϑ,ρ
m V ≤ η(ω)∇ϑ,ρ

m η(ω) = η(ω)ξ(ω, η(ω)) < 0, ω ∈ Nm+1.

where ∇ϑ,ρ
m V is negative definite. Hence by Theorem 4.6 the discrete system (1.1)

is asymptotically stable. □

5. Examples

We examine a few uses for the asymptotic stability in this section.

Example 5.1. The discrete fractional equations for 0 ≤ ρ ≤ 1, 0 < ϑ ≤ 1, and
γ = ϑ+ ρ− ϑρ are examined on Nm+1.

∇ϑ,ρ
m x(ω) = σ(y(ω)− x(ω)), x(m+ 1) = 0.1,

∇ϑ,ρ
m y(ω) = rx(ω)− y(ω)− x(ω)z(ω), y(m+ 1) = 0.2,

∇ϑ,ρ
m z(ω) = x(ω)y(ω)− bz(ω), z(m+ 1) = 0.3, ω ∈ Nm+2,

(5.1)

where σ, r and b are three positive constants. Let us consider the Lyapunov candi-
date function which is positive definite

V (x(ω), y(ω), z(ω)) =
x2(ω) + σy2(ω) + σz2(ω)

2
,

∇ϑ,ρ
m V (x(ω), y(ω), z(ω))

≤ x(ω)∇ϑ,ρ
m x(ω) + σy(ω)∇ϑ,ρ

m y(ω) + σz(ω)∇ϑ,ρ
m z(ω)

= −σ(1 + r)

2
(x(ω)− y(ω))2 − σ(1− r)

2
x2(ω)− σ(1− r)

2
y2(ω)− bσz2(ω),

for ω ∈ Nm+2. By using Theorem 4.6, this system is asymptotically stable if
0 < r < 1, and r is independent of the fractional order ϑ.

Case I: By using Lemma 3.9, we have

1

Γ(−ϑ)

n∑
j=1

Γ(n− j − ϑ)

Γ(n− j + 1)
xj = σ(yn − xn) +

Γ(n+ ρ(1− ϑ))

Γ(n+ 1)Γ(ρ(1− ϑ))
x1, x1 = 0.1,
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1

Γ(−ϑ)

n∑
j=1

Γ(n− j − ϑ)

Γ(n− j + 1)
yj = rxn − yn − xnzn +

Γ(n+ ρ(1− ϑ))

Γ(n+ 1)Γ(ρ(1− ϑ))
y1, y1 = 0.2,

1

Γ(−ϑ)

n∑
j=1

Γ(n− j − ϑ)

Γ(n− j + 1)
zj = xnyn − bzn +

Γ(n+ ρ(1− ϑ))

Γ(n+ 1)Γ(ρ(1− ϑ))
z1, z1 = 0.3,

where n ≥ 2, xj = x(m+ j), yj = y(m+ j) and zj = z(m+ j).

Case II: From the equivalent sum equation from Theorem 3.5, we obtain

xn+2 =
Γ(n+ γ + 2)

Γ(n+ 3)Γγ
x1 + σ

n∑
j=0

Γ(n− j + ϑ)

Γ(n− j + 1)Γϑ
(yj+2 − xj+2), x1 = 0.1,

yn+2 =
Γ(n+ γ + 2)

Γ(n+ 3)Γγ
y1 +

n∑
j=0

Γ(n− j + ϑ)

Γ(n− j + 1)Γϑ
(rxj+2 − yj+2 − xj+2zj+2), y1 = 0.2,

zn+2 =
Γ(n+ γ + 2)

Γ(n+ 3)Γγ
z1 +

n∑
j=0

Γ(n− j + ϑ)

Γ(n− j + 1)Γϑ
(xj+2yj+2 − bzj+2), z1 = 0.3,

where n ≥ 1.
Case I and Case II are equivalent, they lead to the same conclusion. In Case II,

xn+1, yn+1 and zn+1 form an implicit algebra system for 1 ≤ n. For σ = 1, r = 0.5
and b = 1, we show the case of ϑ = 0.95, ρ = 0.90, γ = 0.99 and ϑ = 0.92, ρ = 0.82,
γ = 0.98, and ϑ = 0.9, ρ = 0.8, γ = 0.98 and ϑ = 0.88, ρ = 0.78, γ = 0.97. We
note that the numerical solutions tends to the origin when ω → ∞ in figures (A),
(B), (C) and (D) respectively.

Example 5.2. The discrete fractional equations for 0 ≤ ρ ≤ 1, 0 < ϑ ≤ 1, and
γ = ϑ+ ρ− ϑρ are examined. They are defined on Nm+1.

∇ϑ,ρ
m x(ω) = −x(ω) + y3(ω), x(m+ 1) = 0.1,

∇ϑ,ρ
m y(ω) = −x(ω)− y(ω), y(m+ 1) = 0.2.

(5.2)

Let us consider the Lyapunov candidate function which is positive definite.

V (x(ω), y(ω)) =
1

2
x2(ω) +

1

4
y4(ω),

∇ϑ,ρ
m V (x(ω), y(ω)) =

1

2
∇ϑ,ρ

m x2(ω) +
1

4
∇ϑ,ρ

m y4(ω)

≤ x(ω)∇ϑ,ρ
m x(ω) + y3(ω)∇ϑ,ρ

m y(ω)

≤ x(ω)(−x(ω) + y3(ω)) + y3(ω)(−x(ω)− y(ω))

< −x2(ω)− y4(ω) < 0.

By using Theorem 4.6 this system is asymptotically stable.
Here we used the Newton-iteration method for the solutions. The asymptotic

stability of the system is shown in Figure 1(e) where ϑ = 0.95, ρ = 0.75, γ = 0.99.

xn+2 =
Γ(n+ γ + 2)

Γ(n+ 3)Γγ
x1 +

n∑
j=0

Γ(n− j + ϑ)

Γ(n− j + 1)Γϑ
(−xj+2 + y3j+2), x1 = 0.1,

yn+1 =
Γ(n+ γ + 2)

Γ(n+ 3)Γγ
y1 +

n∑
j=0

Γ(n− j + ϑ)

Γ(n− j + 1)Γϑ
(−xj+2 − yj+2), y1 = 0.2,

(5.3)
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where n ≥ 1.
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Figure 1. IAsymptotic behavior of solutions for various values of
parameters ϑ, ρ, and γ.

Conclusion. We examined the existence and uniqueness theorem, asymptotic sta-
bility of fractional nonlinear difference equations. Since the exact solution is not
known, we are unable to determine the asymptotic stability through the traditional
approach of utilizing solution properties. This study utilized asymptotic analy-
sis of a nonlinear fractional difference equation. We established the positivity of
the solution and formulated a fractional scalar difference equation. Additionally,
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we provided a proof of asymptotic stability using the Lyapunov direct method.
Two numerical examples with simulation results are discussed, employing both the
well-known Lyapunov direct method and the Newton iteration method.
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