Special Issue in honor of Alan C. Lazer. Electron. J. Diff. Eqns., Special Issue 01 (2021), pp. 101-114.

Infinitely many radial solutions for a p-Laplacian problem with negative weight at the origin

Alfonso Castro, Jorge Cossio, Sigifredo Herron, Carlos Velez

Abstract:
We prove the existence of infinitely many sign-changing radial solutions for a Dirichlet problem in a ball defined by the p-Laplacian operator perturbed by a nonlinearity of the form W(|x|)g(u), where the weight function W changes sign exactly once, W(0)<0, W(1) > 0, and function g is p-superlinear at infinity. Standard phase plane analysis arguments do not apply here because the solutions to the corresponding initial value problem may blow up in the region where the weight function is negative. Our result extend those in [2] where W is assumed to be positive at 0 and negative at 1.

Published October 6, 2021.
Math Subject Classifications: 35J92, 34B15, 34G20.
Key Words: Indefinite weight; p-Laplace operator; phase plane; radial solution; shooting method; distributional solution.
DOI: https://doi.org/10.58997/ejde.sp.01.c2

Show me the PDF file (340 K), TEX file for this article.

Alfonso Castro
Department of Mathematics
Harvey Mudd College
Claremont, CA 91711, USA
email: castro@g.hmc.edu
Jorge Cossio
Escuela de Matemáticas
Universidad Nacional de Colombia Sede Medellín
Medellín, Colombia
\email: jcossio@unal.edu.co
Sigifredo Herrón
Escuela de Matemáticas
Universidad Nacional de Colombia Sede Medellín
Medellín, Colombia
\email{sherron@unal.edu.co
  Carlos Vélez
Escuela de Matemáticas
Universidad Nacional de Colombia Sede Medellín
Medellíin, Colombia
email: cauvelez@unal.edu.co

Return to the table of contents for this special isue.
Return to the EJDE web page