Special Issue in honor of Alan C. Lazer. Electron. J. Diff. Eqns., Special Issue 01 (2021), pp. 255-268.

Eigenvalues and bifurcation for Neumann problems with indefinite weights

Marta Calanchi, Bernhard Ruf

Abstract:
We consider eigenvalue problems and bifurcation of positive solutions for elliptic equations with indefinite weights and with Neumann boundary conditions. We give complete results concerning the existence and non-existence of positive solutions for the superlinear coercive and non-coercive problems, showing a surprising complementarity of the respective results.

Published December 14, 2021.
Math Subject Classifications: 35B32, 35B09, 49J35.
Key Words: Eigenvalues; indefinite weight; Neumann problems; bifurcation.
DOI: https://doi.org/10.58997/ejde.sp.01.c4

Show me the PDF file (323 K), TEX file for this article.

Marta Calanchi
Dip. di Matematica
Università degli Studi di Milano
Via Saldini 50
20133 Milano, Italy
email: marta.calanchi@unimi.it
Bernhard Ruf
Dip. di Matematica
Università degli Studi di Milano
Via Saldini 50
20133 Milano, Italy
email: bernhard.ruf@unimi.it

Return to the table of contents for this conference.
Return to the EJDE web page