CONNECTED COMPONENTS OF POSITIVE SOLUTIONS OF BIHARMONIC EQUATIONS WITH THE CLAMPED PLATE CONDITIONS IN TWO DIMENSIONS

RUYUN MA, ZHONGZI ZHAO, DONGLIANG YAN
In memory of Professor Alan C. Lazer

Abstract. This article concerns the clamped plate equation

$$
\begin{aligned}
\Delta^{2} u & =\lambda a(x) f(u), \quad \text { in } \Omega, \\
u & =\frac{\partial u}{\partial \nu}=0 \quad \text { on } \partial \Omega,
\end{aligned}
$$

where Ω is a bounded domain in \mathbb{R}^{2} of class $C^{4, \alpha}, a \in C(\bar{\Omega},(0, \infty)), f$: $[0, \infty) \rightarrow[0, \infty)$ is a locally Hölder continuous function with exponent α, and λ is a positive parameter. We show the existence of S-shaped connected component of positive solutions under suitable conditions on the nonlinearity. Our approach is based on bifurcation techniques.

1. Introduction

Let Ω denote a bounded domain in \mathbb{R}^{2} of class $C^{4, \alpha}$. We consider the clamped plate problem

$$
\begin{gather*}
\Delta^{2} u=\lambda \tilde{f}(x, u) \quad \text { in } \Omega \tag{1.1}\\
u=\frac{\partial u}{\partial \nu}=0 \quad \text { on } \partial \Omega \tag{1.2}
\end{gather*}
$$

where $\partial / \partial \nu$ is the outward normal derivative, $\alpha \in(0,1], \tilde{f}: \bar{\Omega} \times[0, \infty) \rightarrow[0, \infty)$ is a locally Hölder continuous function with exponent α. (1.1), 1.2) forms a model for the clamped plate where \tilde{f} is the load and u the deviation of the plate Ω. Boggio [2, 3] and Hadamard [16, 17] extensively studied this model when $\lambda \tilde{f}(x, u)=e(x)$ and $\tilde{f}(x, u)=u$, respectively.

Dalmasso [7] used the Schauder fixed point theorem to study the existence of positive solutions of nonlinear boundary-value problem of elliptic equation of order $2 m$ under the assumptions
(1) for $x \in \Omega, \tilde{f}(x, s)$ is nondecreasing in s;
(2) $\lim _{s \rightarrow 0} \min _{x \in \bar{\Omega}} \tilde{f}(x, s) / s=\infty, \lim _{s \rightarrow \infty} \max _{x \in \bar{\Omega}} \frac{\tilde{f}(x, s)}{s}=0$,

[^0]and considered the following domains: the unit ball $B=\left\{x \in \mathbb{R}^{N}:\|x\|<1\right\}$, $N \geq 1$, and a bounded domain of class $C^{2 m, \alpha}$ close in $C^{2 m, \alpha}$-sense to a ball. Mâagli, Toumi, and Zribi [20] also used the Schauder fixed point theorem to show the existence of positive continuous solution (in the sense of distributions), when Ω is the unit ball B in \mathbb{R}^{N} and $N \geq 2$, and the nonlinearity \tilde{f} satisfies appropriate conditions related to a Kato class of functions $K_{m, N}$. At most two radial positive solutions were obtained in above mentioned papers.

The aim of this article is to study the global structure of positive solutions for problem (1.1), 1.2 on $\Omega \subset \mathbb{R}^{2}$ when

$$
\tilde{f}(x, s)=a(x) f(s), \quad x \in \bar{\Omega}, s \in[0, \infty)
$$

and to show that the positive solutions set contains an S-shaped connected component under suitable conditions; consequently, $1.1, \sqrt{1.2}$ possesses at least three positive solutions for λ belonging to certain open interval.

We work on $\Omega \subset \mathbb{R}^{2}$ for the following two reasons:
(1) we need to assume that Ω is a bounded domain of class $C^{4, \alpha}(\bar{\Omega})$ which is ϵ_{0}-close in $C^{4, \alpha}$-sense to $B \subset \mathbb{R}^{2}$ for some $\epsilon_{0}>0$ (see Grunau and Sweers [13, 14 , for the detail);
(2) Harnack inequalities are very important in study of the shape of connected components of positive solutions of second order elliptic problems, see Sim and Tanaka [23]. However, no general Harnack inequalities are available for the polyharmonic problems, see Gazzola, Grunau, and Sweers [11, P.146]. Caristi and Mitidieri [6, Theorem 3.6] proved a Harnack type inequalities for linear biharmonic equations containing a Kato potential when $N>4$, which cannot be used to treat the biharmonic problem on $\Omega \subset \mathbb{R}^{2}$. To establish a Harnack inequality for biharmonic problems on $\Omega \subset \mathbb{R}^{2}$, we need 4.13 below. Notice that 4.13 need the restriction $N=m=2$.

For earlier results on the existence and multiplicity of solutions to the mathematical models of nonlinearly supported bending beams see the well-known survey paper of Lazer and Mckenna [18].

2. Preliminaries

Let Y be the Banach space $C(\bar{\Omega})$ equipped with the supremum norm $\|\cdot\|_{C(\bar{\Omega})}$.
2.1. Principal eigenvalue. The biharmonic eigenvalue problem with Dirichlet boundary conditions has the form

$$
\begin{array}{cl}
\Delta^{2} \varphi=\lambda \varphi & \text { in } \Omega \\
\varphi=\frac{\partial \varphi}{\partial \nu}=0 & \text { on } \partial \Omega \tag{2.1}
\end{array}
$$

The famous conjecture for this problem was as follows; by now it has numerous counterexamples.
Conjecture (Szegö, 1950) If Ω is a 'nice' domain (convex), then the first eigenfunction for 2.1 is of fixed sign.

This conjecture was proved to be wrong, see Duffin and others [8, 10, 19, 4, 22]. Coffman [4] proved that the first eigenfunction on a square changes sign. For the domains

$$
A_{\epsilon}=\left\{(x, y) \in \mathbb{R}^{2}: \epsilon^{2}<x^{2}+y^{2}<1\right\} \quad \text { with } 0<\epsilon<1 .
$$

Coffman, Duffin and Shaffer [5] proved the fundamental mode of vibration of a clamped annular plate A_{ϵ} is not of one-sign.

We first recall the definition of closeness of domain introduced by Grunau and Sweers [13].
Definition 2.1. Let $\epsilon>0, \alpha \in(0,1], \Omega$ is called ϵ-closed in $C^{k, \alpha}$-sense to Ω^{*}, if there exists a $C^{k, \alpha}$ mapping $g: \bar{\Omega}^{*} \rightarrow \bar{\Omega}$ such that $g\left(\bar{\Omega}^{*}\right)=\bar{\Omega}$ and

$$
\|g-I d\|_{C^{k, \alpha}\left(\bar{\Omega}^{*}\right)} \leq \epsilon
$$

Using Dalmasso [7, Lemma 3.1(2)] and Dalmasso [7, Theorem 2.2 (ii)], we may deduce the following result.

Lemma 2.2. Let $\Omega \subset \mathbb{R}^{2}$ and Ω is a bounded domain of class $C^{4, \alpha}$. Then there exists $\epsilon_{0}>0$ such that if Ω is ϵ-close in $C^{4, \alpha}$ sense to B for all $0<\epsilon \leq \epsilon_{0}$, then
(1) the problem

$$
\begin{gathered}
\Delta^{2} u=e \quad \text { in } \Omega \\
u=\frac{\partial u}{\partial \nu}=0 \quad \text { on } \partial \Omega
\end{gathered}
$$

with some $e \in C^{0, \alpha}(\bar{\Omega})$ has unique solution $u \in C^{4, \alpha}(\bar{\Omega})$.
(2) If $e \geq 0$ and $e \not \equiv 0$, then $\frac{\partial^{2} u}{\partial \nu^{2}}>0$ for $x \in \partial \Omega$.

In the following, we consider the eigenvalue problem

$$
\begin{gather*}
\Delta^{2} u=\lambda a(x) u, \quad \text { in } \Omega, \\
u=\frac{\partial u}{\partial \nu}=0 \quad \text { on } \partial \Omega \tag{2.2}
\end{gather*}
$$

where $a \in C(\bar{\Omega},(0, \infty))$. The first eigenvalue of 2.2 is defined as

$$
\lambda_{1}(a(\cdot))=\min _{u \in H_{0}^{2}(\Omega) \backslash\{0\}} \frac{\|\Delta u\|_{H_{0}^{2}}^{2}}{\left\|a^{1 / 2} u\right\|_{L^{2}}^{2}},
$$

where $H_{0}^{2}(\Omega)$ is the closure of $C_{c}^{\infty}(\Omega)$ with respect to the normal $\|\cdot\|_{W^{2,2}}$, and $C_{c}^{\infty}(\Omega)$ is the space of $C^{\infty}(\Omega)$-functions having compact support in Ω.

Applying Lemma 2.2 and the standard Krein-Rutman type argument, we may obtain the following result.

Lemma 2.3. Let ϵ_{0} be the constant as given in Lemma 2.2. If $\Omega \subset \mathbb{R}^{2}$ and Ω is a bounded domain of class $C^{4, \alpha}(\bar{\Omega})$ which is ϵ_{0}-close in $C^{4, \alpha}$-sense to B, then
(1) the first eigenvalue $\lambda_{1}(a(\cdot))$ of 2.2 is simple;
(2) the corresponding eigenfunction ψ is of one sign;
(3) $\frac{\partial^{2} \psi}{\partial \nu^{2}}>0, \quad x \in \partial \Omega$.
2.2. Shape of positive solutions. We will make the following assumptions:
(H0) $f:[0, \infty) \rightarrow[0, \infty)$ is a Hölder continuous function with exponent α, and $f(s)>0$ for $s>0$;
(H1) $a \in C(\bar{\Omega},(0, \infty))$;
(H2) there exist $\beta>0, f_{0}>0$ and $f_{1}>0$ such that

$$
\lim _{s \rightarrow 0^{+}} \frac{f(s)-f_{0} s}{s^{1+\beta}}=-f_{1}
$$

(H3)

$$
f_{\infty}:=\lim _{s \rightarrow \infty} \frac{f(s)}{s}=0
$$

Remark 2.4. It is easy to show that if (H2) holds, then

$$
\lim _{s \rightarrow 0^{+}} \frac{f(s)}{s}=f_{0}
$$

Moreover, if (H3) holds, then there exists $\tilde{s}>0, f^{*}>0$ and $\gamma^{*}>0$ such that

$$
\begin{equation*}
f(s) \leq f^{*} s, \quad \forall s \geq 0 ; \quad f(s) \geq \gamma^{*} s, \quad \forall s \in[0, \tilde{s}] \tag{2.3}
\end{equation*}
$$

Lemma 2.5. Let (H0)-(H2) hold. Let $s_{0} \in(0, \infty)$ be a constant and let (λ, u) be the nonnegative solution of

$$
\begin{align*}
\Delta^{2} u & =\lambda a(x) f(u) \quad x \in \Omega, \\
u & =\frac{\partial u}{\partial \nu}=0 \quad x \in \partial \Omega \tag{2.4}
\end{align*}
$$

with $\max \{u(x): x \in \bar{\Omega}\}=u\left(x_{0}\right)=s_{0}$. Then

$$
\lambda \in\left(0, M_{1}\right]
$$

for some positive constant $M_{1}>0$, which is independent of u and λ.
Proof. Assume on the contrary that there exists a sequence $\left\{\left(\mu_{n}, u_{n}\right)\right\}$ of positive solutions of 2.4 with

$$
\begin{equation*}
\left\|u_{n}\right\|_{C(\bar{\Omega})}=s_{0}, \quad \mu_{n} \rightarrow \infty \quad \text { as } n \rightarrow \infty \tag{2.5}
\end{equation*}
$$

Let $y_{n}:=u_{n} /\left\|u_{n}\right\|_{C(\bar{\Omega})}$. Then

$$
\begin{gather*}
\Delta^{2} y_{n}=\mu_{n} a(x) \frac{f\left(u_{n}(x)\right)}{u_{n}(x)} y_{n} \quad x \in \Omega \tag{2.6}\\
y_{n}=\frac{\partial y_{n}}{\partial \nu}=0 \quad x \in \partial \Omega
\end{gather*}
$$

Since (H0) and (H2) imply that $f(s) / s \geq \rho_{0}$ for $s \in\left(0, s_{0}\right]$ for some $\rho_{0}>0$, we let $\psi: \psi(x)>0$ in Ω, be the eigenfunction corresponding $\lambda_{1}(a(\cdot))$, i.e.

$$
\begin{gather*}
\Delta^{2} \psi=\lambda_{1}(a(\cdot)) a(x) \psi, \quad \text { in } \Omega \\
\psi=\frac{\partial \psi}{\partial \nu}=0 \quad \text { on } \partial \Omega \tag{2.7}
\end{gather*}
$$

Multiplying the equation in 2.6 by ψ and multiplying the equation in 2.7 by y_{n}, integrating over Ω by parts and using that

$$
\begin{equation*}
\int_{\Omega} \psi \Delta^{2} y_{n} d x=\int_{\Omega} \Delta y_{n} \Delta \psi d x \tag{2.8}
\end{equation*}
$$

we deduce from $\mu_{n} \rightarrow \infty$ that y_{n} must change its sign in Ω if n is large enough. However, this is a contradiction.
Lemma 2.6. Let (H0)-(H2) hold. Let $s_{0} \in(0, \infty)$ be a constant and let $\Lambda:=$ $\left[0, \max \left\{M_{1}, \lambda_{1}(a(\cdot)) / f_{0}+1\right\}\right]$ be a compact interval. Let (λ, u) be the nonnegative solution of

$$
\begin{gather*}
\Delta^{2} u=\lambda a(x) f(u) \quad x \in \Omega \tag{2.9}\\
u=\frac{\partial u}{\partial \nu}=0 \quad x \in \partial \Omega \tag{2.10}
\end{gather*}
$$

with $\lambda \in \Lambda$ and $\max \{u(x): x \in \bar{\Omega}\}=u\left(x_{0}\right)=s_{0}$. Then

$$
\begin{equation*}
x_{0} \in \Omega_{\delta}:=\{x \in \Omega: d(x, \partial \Omega) \geq \delta\} \tag{2.11}
\end{equation*}
$$

for some positive constant $\delta=\delta\left(s_{0}\right)$, which is independent of $\lambda \in \Lambda$.
Proof. Assume on the contrary that there exists a sequence $\left\{\left(\mu_{k}, y_{k}\right)\right\}$ of nonnegative solutions of $2.9,2.10$ with $\mu_{k} \in \Lambda,\left\|y_{k}\right\|_{C(\bar{\Omega})}=s_{0}$ and

$$
d\left(x_{0, k}, \partial \Omega\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

where $y_{k}\left(x_{0, k}\right)=\max \left\{y_{k}(x): x \in \bar{\Omega}\right\}$. Since $\left\{\mu_{k} a(\cdot) f\left(y_{k}(\cdot)\right)\right\}$ is uniformly bounded in $C(\bar{\Omega})$, it follows that

$$
\begin{equation*}
\left\|\mu_{k} a(\cdot) f\left(y_{k}(\cdot)\right)\right\|_{L^{p}(\Omega)} \leq M_{2} \tag{2.12}
\end{equation*}
$$

for some constant $M_{2}>0$.
By Agmon-Douglis-Nirenberg estimates in [1], for any $p>1$,

$$
\begin{equation*}
\left\|u_{k}\right\|_{W^{4, p}(\Omega)} \leq C_{p}\left\|\mu_{k} a(\cdot) f\left(y_{k}(\cdot)\right)\right\|_{L^{p}(\Omega)} \leq C_{p} M_{2}, \tag{2.13}
\end{equation*}
$$

where C_{p} is a positive constant. By the embedding theorem [11, Theorem 2.6],

$$
W^{4, p}(\Omega) \hookrightarrow C^{3, \alpha}(\bar{\Omega})
$$

for all $p>\frac{2}{4-3}=2$ and $\alpha \in\left(0,1-\frac{2}{p}\right] \cap(0,1)$. Thus

$$
\begin{equation*}
\left\|u_{k}\right\|_{C^{3, \alpha}(\bar{\Omega})} \leq M_{3} \tag{2.14}
\end{equation*}
$$

for some constant $M_{3}>0$. Since $C^{3, \alpha}(\bar{\Omega}) \hookrightarrow \hookrightarrow C(\bar{\Omega})$ is a compact embedding, it follows that after taking a subsequence if necessary, y_{k} converges to \hat{y} in $C(\bar{\Omega})$. Moreover,

$$
\begin{equation*}
\|\hat{y}\|_{C(\bar{\Omega})}=s_{0} . \tag{2.15}
\end{equation*}
$$

Since $\bar{\Omega} \subset \mathbb{R}^{2}$ is bounded and closed, we may assume that $x_{0, k} \rightarrow x^{*}$, and consequently, $\hat{y}\left(x^{*}\right)=s_{0}$. On the other hand, $x^{*} \in \partial \Omega$, which together with the fact $y_{n}(x)=0$ on $\partial \Omega$ imply $\hat{y}\left(x^{*}\right)=0$. However, this contradicts 2.15.
2.3. Global solutions branches for positive mappings. Suppose that E is a real Banach space with norm $\|\cdot\|$. Let K be a cone in E. A nonlinear mapping $A:[0, \infty) \times K \rightarrow E$ is said to be positive if $A([0, \infty) \times K) \subseteq K$. It is said to be K completely continuous if A is continuous and maps bounded subsets of $[0, \infty) \times K$ to precompact subset of E. If L is a continuous linear operator on E, denote $r(L)$ the spectral radius of L. Define

$$
c_{K}(L)=\{\lambda \in[0, \infty): \text { there exists } x \in K \text { with }\|x\|=1 \text { and } x=\lambda L x\}
$$

The following Lemma will play a very important role in the proof of our main results, which is essentially a consequence of Dancer [9, Theorem 2] .

Lemma 2.7. Assume that
(i) K has nonempty interior and $E=\overline{K-K}$;
(ii) $A:[0, \infty) \times K \rightarrow E$ is K-completely continuous and positive, $A(\lambda, 0)=0$ for $\lambda \in \mathbb{R}, \quad A(0, u)=0$ for $u \in K$ and

$$
A(\lambda, u)=\lambda L u+F(\lambda, u)
$$

where $L: E \rightarrow E$ is a strongly positive linear compact operator on E with $r(L)>0, F:[0, \infty) \times K \rightarrow E$ satisfies $\|F(\lambda, u)\|=\circ(\|u\|)$ as $\|u\| \rightarrow 0$ locally uniformly in λ.

Then there exists an unbounded connected subset \mathcal{C} of

$$
\mathcal{D}_{K}(A)=\{(\lambda, u) \in[0, \infty) \times K: u=A(\lambda, u), u \neq 0\} \cup\left\{\left(r(L)^{-1}, 0\right)\right\}
$$

such that $\left(r(L)^{-1}, 0\right) \in \mathcal{C}$.

3. Main results

Let \tilde{s} be a positive constant. In the rest of this paper we will take δ to be the constant in Lemma 2.6 with $\Lambda=\left[0, \max \left\{M_{1}, \lambda_{1}(a(\cdot)) / f_{0}+1\right\}\right]$. To study the multiplicity of positive solutions of $2.9,2.20$, we need the following assumption

$$
\begin{equation*}
\min _{\frac{\tilde{s}}{C} \leq s \leq \tilde{s}} \frac{f(s)}{s}>\frac{C f_{0}}{\lambda_{1}(a(\cdot)) \min _{\Omega_{\delta / 2}} G_{2,2, \Omega}(x, y) a_{0}\left|B_{\delta / 2}\right|}, \tag{H4}
\end{equation*}
$$

where $a_{0}=\min _{\bar{\Omega}} a(\cdot),\left|B_{\delta / 2}\right|=\operatorname{meas} B_{\delta / 2}$,

$$
\Omega_{r}:=\{x \in \Omega: d(x, \partial \Omega)>r\}, \quad B_{r}:=\{x \in B: d(x, \partial B)>r\}
$$

and C is the constant satisfying

$$
\begin{equation*}
\frac{1}{C}(d(x))^{2} G_{2,2, B}(0, y) \leq G_{2,2, B}(x, y) \leq C G_{2,2, B}(0, y) \quad x, y \in B \tag{3.2}
\end{equation*}
$$

where $d(x)=d(x, \partial \Omega), G_{2,2, B}$ is the Green function of Δ^{2} for the Dirichlet problem in B, see Mâagli, Toumi and Zribi [20, P.3] for the details.
Using a similar idea to show the existence of three positive solutions of onedimensional p-Laplacian problem and arguing the shape of bifurcation as in Sim and Tanaka [23], we have the following results for

$$
\begin{array}{ll}
\Delta^{2} u=\lambda a(x) f(u) & \text { in } \Omega \\
u=\frac{\partial u}{\partial \nu}=0 & \text { on } \partial \Omega . \tag{3.4}
\end{array}
$$

Theorem 3.1. Let ϵ_{0} be the constant in Lemma 2.2. Let $\Omega \subset \mathbb{R}^{2}$ is a bounded domain of class $C^{4, \alpha}(\bar{\Omega})$ which is ϵ_{0}-close in $C^{4, \alpha}$-sense to B. Let $(\mathrm{H} 0)-(\mathrm{H} 4)$ hold. Then there exist $\lambda_{*} \in\left(0, \lambda_{1}(a(\cdot)) / f_{0}\right)$ and $\lambda^{*} \in\left(\lambda_{1}(a(\cdot)) / f_{0}, \infty\right)$ such that
(i) (3.3), (3.4) has at least one positive solution if $\lambda=\lambda_{*}$;
(ii) (3.3), 3.4) has at least two positive solutions if $\lambda_{*}<\lambda \leq \lambda_{1}(a(\cdot)) / f_{0}$;
(iii) (3.3), (3.4) has at least three positive solutions if $\lambda_{1}(a(\cdot)) / f_{0}<\lambda<\lambda^{*}$;
(iv) (3.3), 3.4 has at least two positive solutions if $\lambda=\lambda^{*}$;
(v) 3.3, (3.4) has at least one positive solution if $\lambda>\lambda^{*}$.

See illustrations in Figure 1.

Remark 3.2. From Grunau and Sweers [14, 15], the Green function in (3.2) is

$$
\begin{equation*}
G_{2,2, B}(x, y)=k_{2,2}|x-y|^{2} \int_{1}^{\left||x| y-\frac{x}{|x|}\right| /|x-y|}\left(v^{2}-1\right) v^{-1} d v, \quad x, y \in B \tag{3.5}
\end{equation*}
$$

and satisfies

$$
\begin{equation*}
G_{2,2, B}(x, y) \sim d(x) d(y) \min \left\{1, \frac{d(x) d(y)}{|x-y|^{2}}\right\} \tag{3.6}
\end{equation*}
$$

where $k_{2,2}$ is a known constant. By combining (3.5), (3.6) and doing numerical calculation, the exact value of C in (H4) can be obtained, denoted as C^{\diamond}.

Figure 1. Connected component of the solution set of (3.3), (3.4)

Remark 3.3. For the general case $\Omega \neq B$, we may transform (3.3), 3.4 into a new problem in B using the holomorphic mapping from Ω to B, see Grunau and Sweers 15. By (3.5 and some simple computations, we may obtain a constant $C^{*}>0$ such that the Green function $G_{2,2, \Omega}(x, y)$ of (3.3), (3.4) and $G_{2,2, B}(x, y)$ satisfy

$$
\frac{1}{C^{*}} G_{2,2, B}(x, y) \leq G_{2,2, \Omega}(x, y) \leq C^{*} G_{2,2, B}(x, y)
$$

Remark 3.4. We may provide an example to illustrate the application of Theorem 3.1 in the case $\Omega=B$. Take

$$
K=\max \left\{\frac{1}{2}, \frac{C^{\diamond}}{\lambda_{1}(1) \tilde{G}_{\delta / 2}\left|B_{\delta / 2}\right|}\right\}+1
$$

and $\tilde{G}_{\delta / 2}:=\min _{B_{\delta / 2}} G_{2,2, B}(x, y)$. Let us consider the boundary value problem

$$
\begin{align*}
& \Delta^{2} u=\hat{f}(u), \quad \text { in } B \\
& u=\frac{\partial u}{\partial \nu}=0 \quad \text { on } \partial B \tag{3.7}
\end{align*}
$$

with

$$
\hat{f}(s)= \begin{cases}s-s^{2}, & \text { if } s \in[0,1 / 2) \\ \left(2 K-\frac{1}{2}\right) s-K+\frac{1}{2}, & \text { if } s \in[1 / 2,1) \\ K s^{2}, & \text { if } s \in\left[1, C^{\diamond}\right] \\ K\left(C^{\diamond}\right)^{3 / 2} \sqrt{s}, & \text { if } s \in\left(C^{\diamond}, \infty\right)\end{cases}
$$

Obviously, \hat{f} is a continuous, non-decreasing function with $f(0) \geq 0$, from [11, Theorem 7.1] the solution u of (3.7) is radially symmetric. So, we may take $\delta=1 / 4$.

Obviously, \hat{f} satisfies (H2) and (H3) with $\beta=1, f_{1}=1, f_{0}=1 ;(\mathrm{H} 4)$ with $\tilde{s}=C^{\diamond}$ is satisfied since

$$
\min _{\frac{\tilde{s}}{C^{\diamond}} \leq s \leq \tilde{s}} \frac{f(s)}{s}=\min _{1 \leq s \leq C^{\diamond}} K s>K>\frac{C^{\diamond}}{\lambda_{1}(1) \tilde{G}_{1 / 8}\left|B_{1 / 8}\right|} .
$$

Thus, we are in the position to use Theorem 3.1.

4. Bounds of solutions

4.1. A priori estimation. Let

$$
\begin{align*}
X=\{ & \left.u \in C^{2, \alpha}(\bar{\Omega}): u \text { satisfies } 3.4\right), \text { and there exists } \gamma \in(0, \infty) \text { such that } \tag{4.1}\\
& -\gamma \psi(x) \leq u(x) \leq \gamma \psi(x), x \in \Omega\} .
\end{align*}
$$

Then X is a Banach space under the norm

$$
\|u\|_{X}:=\inf \{\gamma:-\gamma \psi(x) \leq u(x) \leq \gamma \psi(x) \text { for } x \in \Omega\}
$$

Let

$$
\begin{equation*}
P:=\{u \in X: u(x) \geq 0, x \in \Omega\} \tag{4.2}
\end{equation*}
$$

Then P is normal, has a nonempty interior, and $X=\overline{P-P}$.
Lemma 4.1. Let Ω be as in Theorem 3.1. Let (H0)-(H3) hold. Let $J:=\left[a_{1}, b_{1}\right] \subset$ $[0, \infty)$. Assume that $\left\{\left(\mu_{n}, y_{n}\right)\right\}$ be a sequence of solutions of 3.3), 3.4 with

$$
\begin{equation*}
\mu_{n} \in J, \quad\left\|y_{n}\right\|_{C(\bar{\Omega})} \leq M \tag{4.3}
\end{equation*}
$$

for some constant M, independent of n. Then $y_{n} \in C^{4}(\bar{\Omega}) \cap X$ and $\left\{y_{n}\right\}$ is bounded in X.

Proof. It follows from 2.3,

$$
\begin{aligned}
\Delta^{2} y_{n} & =\mu_{n} a(x) f\left(y_{n}\right) \quad \text { in } \Omega \\
y_{n} & =\frac{\partial y_{n}}{\partial \nu}=0 \quad \text { on } \partial \Omega
\end{aligned}
$$

and Grunau and Sweers [14, P.620], that for any $p>1$,

$$
\left\|y_{n}\right\|_{W_{0}^{4, p}(\Omega)} \leq M_{4}
$$

for some positive constant M_{4}, independent of n. Thus, the Sobolev imbedding theorem [12, Corollary 7.1] guarantees that

$$
\left\|y_{n}\right\|_{C^{3}(\bar{\Omega})} \leq M_{5}
$$

and consequently, $\left\|y_{n}\right\|_{C^{0, \alpha}(\bar{\Omega})} \leq M_{6}$ for some positive constant M_{6}, independent of n. Thus

$$
\left\|\mu_{n} a f\left(y_{n}\right)\right\|_{C^{0, \alpha}(\bar{\Omega})} \leq M_{7}
$$

for some positive constant M_{7}, independent of n. Combining this with (3.3), (3.4) and using [7, Lemma 3.1], it follows that

$$
\left\|y_{n}\right\|_{C^{4, \alpha}(\bar{\Omega})} \leq M_{8}
$$

for some positive constant M_{8}, independent of n. Therefore,

$$
\left|y_{n}(x)\right| \leq C_{8} \psi(x) \quad x \in \Omega
$$

for some positive constant C_{8}, independent of n. Therefore, $\left\|y_{n}\right\|_{X} \leq M_{9}$ for some positive constant M_{9}, independent of n.

Let $h: B \rightarrow \Omega$ be a bijection such that

$$
h\left(x_{1}+i x_{2}\right)=h_{1}\left(x_{1}, x_{2}\right)+i h_{2}\left(x_{1}, x_{2}\right)
$$

is a holomorphic mapping. Then $\Delta(u \circ h)=\frac{1}{2}|\nabla h|^{2}(\Delta u) \circ h$. We write

$$
\begin{equation*}
g(x)=2|(\nabla h)(x)|^{-2} \tag{4.4}
\end{equation*}
$$

If $\partial \Omega$ is sufficiently smooth, then a Theorem of Kellogg-Warschawski (see [21) implies that h is sufficiently smooth and that there exist $c_{i}>0$ such that $c_{1} \leq$ $|(\nabla h)(x)|^{-2} \leq c_{2}$. The problem (3.3), (3.4) can be transformed into

$$
\begin{gather*}
(g(\cdot) \Delta)^{2}(u \circ h)=(\lambda a(\cdot) f(u) \circ h) \quad \text { in } B, \tag{4.5}\\
(u \circ h)=\frac{\partial(u \circ h)}{\partial \nu}=0 \quad \text { on } \partial B, \tag{4.6}
\end{gather*}
$$

which can also be written as

$$
\begin{gather*}
\left((-\Delta)^{2}+\mathcal{A}\right)(u \circ h)=g^{-2}((\lambda a(\cdot) f(u)) \circ h) \quad \text { in } B, \tag{4.7}\\
(u \circ h)=\frac{\partial(u \circ h)}{\partial \nu}=0 \quad \text { on } \partial B, \tag{4.8}
\end{gather*}
$$

where for some \mathcal{A} of the form

$$
\begin{equation*}
\mathcal{A}=\sum_{|\alpha|<4} a_{\alpha}(x) D^{\alpha}, \quad a_{\alpha} \in C(\bar{B}) \tag{4.9}
\end{equation*}
$$

And Ω is close to the disk B means that $\|h-I d\|_{C^{3}(\bar{B})}$ sufficiently small. For example this holds for an ellipse that is close to a circle, see Grunau and Sweers 13 .

Lemma 4.2. Let Ω be as in Theorem 3.1 and $N=2$. Let $I \subset(0, \infty)$ be a compact interval. Assume that $(\mathrm{H} 0)-(\mathrm{H} 3)$ hold. Then there exists $M_{10}>0$, such that for any positive solutions of (3.3), (3.4) with $\lambda \in I$, we have

$$
\begin{equation*}
\|u\|_{C(\bar{\Omega})} \leq M_{10} \tag{4.10}
\end{equation*}
$$

Proof. Suppose on the contrary that there exists a sequence $\left\{\left(\mu_{n}, u_{n}\right)\right\}$ of positive solutions of (3.3), 3.4), such that

$$
\begin{equation*}
\mu_{n} \in I, \quad\left\|u_{n}\right\|_{C(\bar{\Omega})} \rightarrow \infty \tag{4.11}
\end{equation*}
$$

This together with the fact $h: B \rightarrow \Omega$ is a bijection and $\|h-I d\|_{C^{3}(\bar{B})}$ is sufficiently small that

$$
\begin{equation*}
\left\|u_{n} \circ h\right\|_{C(\bar{B})} \rightarrow \infty . \tag{4.12}
\end{equation*}
$$

By Mâagli, Toumi and Zribi [20, P.3], $N=m=2$ implies

$$
\begin{equation*}
\frac{1}{C}(d(x))^{2} G_{2,2, B}(0, y) \leq G_{2,2, B}(x, y) \leq C G_{2,2, B}(0, y) \quad x, y \in B \tag{4.13}
\end{equation*}
$$

where $d(x):=\operatorname{dist}(x, \partial B)>0$ in B. From this and 4.11, 4.12, it follows that for $x \in B$,

$$
\begin{align*}
\left(u_{n} \circ h\right)(x) & =\lambda \int_{B} G_{2,2, B}(x, y) a f\left(\left(u_{n} \circ h\right)(y)\right) d y \\
& \geq \lambda \int_{B} \frac{1}{C}(d(x))^{2} G_{2,2, B}(0, y) a f\left(\left(u_{n} \circ h\right)(y)\right) d y \\
& \geq \lambda \int_{B} \frac{1}{C}(d(x))^{2} \frac{1}{C} G_{2,2, B}\left(x_{u}, y\right) a f\left(\left(u_{n} \circ h\right)(y)\right) d y \tag{4.14}\\
& =\left(\frac{1}{C}\right)^{2}(d(x))^{2} \int_{B} \lambda G_{2,2, B}\left(x_{u}, y\right) a f\left(\left(u_{n} \circ h\right)(y)\right) d y \\
& =\frac{1}{C^{2}}(d(x))^{2}\left\|u_{n} \circ h\right\|_{C(\bar{B})}
\end{align*}
$$

where $(u \circ h)\left(x_{u}\right)=\|u \circ h\|_{C(\bar{\Omega})}$. Thus, for any $\sigma>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(u_{n} \circ h\right)(x)=\infty \quad \text { uniformly for } x \in \Omega_{\sigma} \tag{4.15}
\end{equation*}
$$

Let

$$
y_{n}:=\frac{u_{n} \circ h}{\left\|u_{n} \circ h\right\|_{C(\bar{B})}}
$$

Then by 4.11, 4.12) and standard compact argument, we deduce that after taking a subsequence if necessary, $y_{n} \rightarrow y^{*}$ for some y^{*} with $\left\|y^{*}\right\|_{C(\bar{B})}=1$.

On the other hand, combining (4.11), 4.12), and using $f_{\infty}=0, I \subset[0, \infty)$, and 4.15, it follows that $\left\|y^{*}\right\|_{C(\bar{B})}=0$. However, this is a contradiction.

Using a similar argument for 4.14, we obtain the following Harnack type inequalities.
Lemma 4.3. Let $\Omega \subset \mathbb{R}^{2}$ be as in Theorem 3.1. Let β_{1} and $\beta_{2} \in(0, \infty)$ be two positive constants. Let $V \in C(\bar{\Omega})$ with

$$
\beta_{1} \leq V(x) \leq \beta_{2} \quad x \in \Omega
$$

If u is a nonnegative weak solution of

$$
\begin{aligned}
& \Delta^{2} u=V(x) u \quad x \in \Omega \\
& u=\frac{\partial u}{\partial \nu}=0 \quad x \in \partial \Omega
\end{aligned}
$$

then for any $\sigma>0$, there exists $C=C\left(\beta_{1}, \beta_{2}\right)$ such that we have

$$
\sup _{\bar{\Omega}} u \leq C \inf _{\Omega_{\sigma}} u
$$

where C is independent of u and $V \in\left\{w \in Y: \beta_{1} \leq w(x) \leq \beta_{2}\right.$ for $\left.x \in \Omega\right\}$.

5. Rightward bifurcation

Define $L: D(L) \rightarrow Y$ by

$$
L u:=\Delta^{2} u
$$

on the domain

$$
D(L)=\left\{u \in C^{2, \alpha}(\bar{\Omega}) \cap C^{4}(\Omega): u \text { satisfies 3.4 }\right\}
$$

It is easy to check that $L^{-1}: Y \rightarrow Y$ is compact.

It follows from Dalmasso [7] Theorem 2.3] that if for any $z \in Y$ with $z \geq 0$ and $z\left(x_{0}\right)>0$ for some $x_{0} \in \bar{\Omega}$ with

$$
\begin{equation*}
L u-z=0 \tag{5.1}
\end{equation*}
$$

Then $u \in \operatorname{int} P$.
Let $\zeta, \xi \in C([0, \infty))$ be such that

$$
\begin{aligned}
& f(u)=f_{0} u+\zeta(u) \\
& f(u)=f_{\infty} u+\xi(u)
\end{aligned}
$$

with

$$
\lim _{u \rightarrow 0} \frac{\zeta(u)}{u}=0, \quad \lim _{u \rightarrow \infty} \frac{\xi(u)}{u}=0
$$

Let

$$
\begin{equation*}
\tilde{\xi}(r)=\max \{|\xi(u)|: 0 \leq u \leq r\} . \tag{5.2}
\end{equation*}
$$

Then $\tilde{\xi}$ is nondecreasing and

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{\tilde{\xi}(r)}{r}=0 \tag{5.3}
\end{equation*}
$$

Let us consider

$$
\begin{equation*}
L u(x)=\lambda f_{0} a(x) u(x)+\lambda a(x) \zeta(u(x)), \quad x \in \bar{\Omega} \tag{5.4}
\end{equation*}
$$

as a bifurcation problem from the trivial solution $u \equiv 0$.
Combining this with Lemma 2.7, we can conclude that there exists an unbounded connected subset \mathcal{C} of the set

$$
\{(\lambda, u) \in(0, \infty) \times P:(\lambda, u) \text { satisfies (5.4), } u \in \operatorname{int} P\} \cup\left\{\left(\lambda_{1}(a(\cdot)) / f_{0}, 0\right)\right\}
$$

such that $\left(\lambda_{1}(a(\cdot)) / f_{0}, 0\right) \in \mathcal{C}$.
By the method used by Sim and Tanaka to prove [23, Lemma 2.3], with obvious changes, we obtain the following result.
Lemma 5.1. Let Ω be as in Theorem 3.1. Let (H0)-(H2) hold. Let $\left\{\left(\eta_{j}, u_{j}\right)\right\}$ be a sequence of positive solutions to (3.3), (3.4) which satisfies $\left\|u_{j}\right\|_{C(\bar{\Omega})} \rightarrow 0$ and $\eta_{j} \rightarrow \lambda_{1}(a(\cdot)) / f_{0}$. Let ψ be the eigenfunction corresponding to $\lambda_{1}(a(\cdot))$, which satisfies $\|\psi\|_{C(\bar{\Omega})}=1$. Then there exists a subsequence of $\left\{u_{j}\right\}$, again denoted by $\left\{u_{j}\right\}$, such that $u_{j} /\left\|u_{j}\right\|_{C(\bar{\Omega})}$ converges uniformly to ψ on $\bar{\Omega}$.
Lemma 5.2. Let Ω be as in Theorem 3.1. Let (H0)-(H2) hold. Let \mathcal{C} be as in Lemma 2.7. Then there exists $\hat{\delta}>0$ such that $(\lambda, u) \in \mathcal{C}$ and $\left|\lambda-\lambda_{1}(a(\cdot)) / f_{0}\right|+$ $\|u\|_{C(\bar{\Omega})} \leq \delta$ imply $\lambda>\lambda_{1}(a(\cdot)) / f_{0}$.
Proof. Assume on the contrary that there exists a sequence $\left\{\left(\eta_{j}, u_{j}\right)\right\}$ such that $\left(\eta_{j}, u_{j}\right) \in \mathcal{C}, \eta_{j} \rightarrow \lambda_{1}(a(\cdot)) / f_{0},\left\|u_{j}\right\|_{C(\bar{\Omega})} \rightarrow 0$ and $\eta_{j} \leq \lambda_{1}(a(\cdot)) / f_{0} . \quad$ By the standard argument, we may get that there exists a subsequence of $\left\{u_{j}\right\}$, again denoted by $\left\{u_{j}\right\}$, such that $u_{j} /\left\|u_{j}\right\|_{C(\bar{\Omega})}$ converges uniformly to ψ on $\bar{\Omega}$, where $\psi>0$ is the first eigenfunction of 2.2 which satisfies $\|\psi\|_{C(\bar{\Omega})}=1$. Multiplying (3.3) with $(\lambda, u)=\left(\eta_{j}, u_{j}\right)$ by u_{j} and integrating it over Ω, we obtain

$$
\eta_{j} \int_{\Omega} a(x) f\left(u_{j}(x)\right) u_{j}(x) d x=\int_{\Omega}\left(\Delta u_{j}(x)\right)^{2} d x
$$

Using the definition of $\lambda_{1}(a(\cdot))$, we obtain

$$
\eta_{j} \int_{\Omega} a(x) f\left(u_{j}(x)\right) u_{j}(x) d x \geq \lambda_{1}(a(\cdot)) \int_{\Omega} a(x)\left(u_{j}(x)\right)^{2} d x
$$

It is easy to see that

$$
\begin{aligned}
& \int_{\Omega} a(x) \frac{f\left(u_{j}(x)\right)-f_{0} u_{j}(x)}{\left|u_{j}(x)\right|^{1+\beta}}\left|\frac{u_{j}(x)}{\left\|u_{j}\right\|_{C(\bar{\Omega})}}\right|^{2+\beta} d x \\
& \geq \frac{\lambda_{1}(a(\cdot))-f_{0} \eta_{j}}{\eta_{j}\left\|u_{j}\right\|_{C(\bar{\Omega})}^{\beta}} \int_{\Omega} a(x)\left|\frac{u_{j}(x)}{\left\|u_{j}\right\|_{C(\bar{\Omega})}}\right|^{2} d x
\end{aligned}
$$

Lebesgue's dominated convergence theorem and (H2) imply that

$$
\int_{\Omega} a(x) \frac{f\left(u_{j}(x)\right)-f_{0} u_{j}(x)}{\left|u_{j}(x)\right|^{1+\beta}}\left|\frac{u_{j}(x)}{\left\|u_{j}\right\|_{C(\bar{\Omega})}}\right|^{2+\beta} d x \rightarrow-f_{1} \int_{\Omega} a(x)|\psi(x)|^{2+\beta} d x<0
$$

and

$$
\int_{\Omega} a(x)\left|\frac{u_{j}(x)}{\left\|u_{j}\right\|_{C(\bar{\Omega})}}\right|^{2} d x \rightarrow \int_{\Omega} a(x)|\psi(x)|^{2} d x>0
$$

This contradicts $\eta_{j} \leq \lambda_{1}(a(\cdot)) / f_{0}$.

6. DIRECTION TURN OF BIFURCATION

In this section, we show that there is a direction turn of the bifurcation under assumptions (H3) and (H4).

Lemma 6.1. Let Ω be as in Theorem 3.1. Let (H0)-(H3) hold. Let $u \in C^{4}(\bar{\Omega})$ be the positive solution of (3.3), (3.4) with $u\left(x_{0}\right)=\|u\|_{C(\bar{\Omega})}=s_{0}$ for some $s_{0}>0$, and $\lambda \in\left[0, \max \left\{M_{1}, \lambda_{1}(a(\cdot)) / f_{0}+1\right\}\right]$. Then

$$
\begin{equation*}
\frac{1}{C}\|u\|_{C\left(\bar{B}_{\delta / 2}\left(x_{0}\right)\right)} \leq u(x) \leq\|u\|_{C\left(\bar{B}_{\delta / 2}\left(x_{0}\right)\right)}, \quad x \in B_{\delta / 2}\left(x_{0}\right) \tag{6.1}
\end{equation*}
$$

where C is the constant in 3.2.
Proof. Lemma 2.6 yields $x_{0} \in \Omega_{\delta}$. Thus the desired results is an immediate consequence of 4.13).

Lemma 6.2. Let Ω be as in Theorem 3.1. Assume that (H0)-(H4) hold. Let u be a positive solution of $(3.3),(3.4)$ with $\|u\|_{C(\bar{\Omega})}=s_{0}$. Then

$$
\lambda<\lambda_{1}(a(\cdot)) / f_{0}, \quad \text { or } \quad \lambda>\lambda_{1}(a(\cdot)) / f_{0}+1
$$

Proof. Let u be a positive solution of (3.3), (3.4). Then from Lemma 6.1 we have

$$
\frac{1}{C} s_{0} \leq u(x) \leq s_{0}, \quad x \in B_{\delta / 2}\left(x^{*}\right)
$$

where $u\left(x^{*}\right)=\|u\|_{C(\bar{\Omega})}$.
Assume on the contrary that $\lambda \geq \lambda_{1}(a(\cdot)) / f_{0}$. Then from Lemma 2.6 and (H4), it follows that

$$
\begin{aligned}
s_{0} & =u\left(x^{*}\right) \\
& =\lambda \int_{\Omega} G_{2,2, \Omega}\left(x^{*}, y\right) a(y) f(u(y)) d y \\
& \geq \lambda \int_{\Omega_{\delta / 2}} G_{2,2, \Omega}\left(x^{*}, y\right) a(y) f(u(y)) d y \\
& \geq \lambda \int_{B_{\delta / 2}\left(x^{*}\right)} G_{2,2, \Omega}\left(x^{*}, y\right) a(y) f(u(y)) d y
\end{aligned}
$$

$$
\begin{aligned}
& \geq \lambda \int_{B_{\delta / 2}\left(x^{*}\right)} G_{2,2, \Omega}\left(x^{*}, y\right) a(y) \frac{f(u(y))}{u(y)}(u(y)) d y \\
& \geq \frac{\lambda_{1}(a(\cdot))}{f_{0}} \min _{\Omega_{\delta / 2}} G_{2,2, \Omega}(x, y) a_{0} \text { meas } B_{\delta / 2} \min _{\frac{s_{0}}{C} \leq s \leq s_{0}} \frac{f(s)}{s} \frac{s_{0}}{C} \\
& >s_{0}
\end{aligned}
$$

This is a contradiction. Therefore, $\lambda<\frac{\lambda_{1}(a(\cdot))}{f_{0}}$.

7. Second turn and proof of Theorem 3.1

In this section, we give a block for a parameter and a priori estimate and finally a proof of Theorem 3.1.
Lemma 7.1. Let Ω be as in Theorem 3.1. Assume that (H0)—(H4) hold. Let (λ, u) be a positive solution of (3.3), (3.4). Then there exists $C_{1}>0$ independent of u such that $\lambda \underline{f}\left(\|u\|_{C(\bar{\Omega})}\right)<C_{1}$, where

$$
\begin{equation*}
\underline{f}(s):=\min _{\frac{s}{C} \leq t \leq s} f(t) / t \tag{7.1}
\end{equation*}
$$

Proof. Let $u\left(x_{u}\right)=\|u\|_{C(\bar{\Omega})}$. Then

$$
\begin{aligned}
u\left(x_{u}\right) & =\lambda \int_{\Omega} G_{2,2, \Omega}\left(x_{u}, y\right) a(y) f(u(y)) d y \\
& \geq \lambda \int_{B_{\delta}\left(x_{u}\right)} G_{2,2, \Omega}\left(x_{u}, y\right) a(y) f(u(y)) d y \\
& \geq \lambda \min _{\Omega_{\delta / 2}} G_{2,2, \Omega}(x, y)\left|B_{\delta}\right| a_{0} \underline{f}\left(\|u\|_{C(\bar{\Omega})}\right) \frac{1}{C}\|u\|_{C(\bar{\Omega})}
\end{aligned}
$$

which implies $\lambda \underline{f}\left(\|u\|_{C(\bar{\Omega})}\right)<C_{1}$ for some $C_{1}>0$.
Proof of Theorem 3.1. By Lemma 5.2, \mathcal{C} is bifurcating from $\left(\lambda_{1}(a(\cdot)) / f_{0}, 0\right)$ and goes rightward.

We claim that there exists a sequence $\left\{\left(\beta_{j}, u_{j}\right)\right\} \subset \mathcal{C}$ satisfying

$$
\begin{equation*}
\beta_{j} \rightarrow+\infty, \quad\left\|u_{j}\right\|_{C(\bar{\Omega})} \rightarrow \infty \tag{7.2}
\end{equation*}
$$

Assume on the contrary that there exists $\beta^{*}>0$, such that

$$
\begin{equation*}
\|u\|_{C(\bar{\Omega})} \leq M_{11} \quad \text { for all }(\lambda, u) \in \mathcal{C} \text { with } \lambda>\beta^{*} \tag{7.3}
\end{equation*}
$$

Then $0 \leq\|u\|_{C(\bar{\Omega})} \leq M_{11}$ implies $\underline{f}\left(\|u\|_{C(\bar{\Omega})}\right) \geq \delta_{0}$ for some constant $\delta_{0}>0$, and consequently

$$
\begin{equation*}
\lambda \underline{f}\left(\|u\|_{C(\bar{\Omega})}\right) \rightarrow \infty \quad \text { as } \lambda \rightarrow \infty . \tag{7.4}
\end{equation*}
$$

However, this contradicts Lemma 7.1. Therefore, $\sqrt{7.2}$ holds.
Thus, there exists $\left(\beta_{0}, u_{0}\right) \in \mathcal{C}$ such that $\left\|u_{0}\right\|_{C(\bar{\Omega})}=s_{0}$. Lemma 6.2 implies that $\beta_{0}<\lambda_{1}(a(\cdot)) / f_{0}$. By Lemmas 5.2, 6.2 and 4.3, \mathcal{C} passes through some points $\left(\lambda_{1}(a(\cdot)) / f_{0}, v_{1}\right)$ and $\left(\lambda_{1}(a(\cdot)) / f_{0}, v_{2}\right)$ with $\left\|v_{1}\right\|_{C(\bar{\Omega})}<s_{0}<\left\|v_{2}\right\|_{C(\bar{\Omega})}$. By Lemmas 5.2 and 6.2 and the fact $\mathcal{C} \cap(\{0\} \times P)=\{(0,0)\}$, there exist $\bar{\lambda}$ and $\underline{\lambda}$ which satisfy $0<\underline{\lambda}<\lambda_{1}(a(\cdot)) / f_{0}<\bar{\lambda}$ and both (i) and (ii):
(i) if $\lambda \in\left(\lambda_{1}(a(\cdot)) / f_{0}, \bar{\lambda}\right]$, then there exists u and v such that $(\lambda, u),(\lambda, v) \in \mathcal{C}$ and $\|u\|_{C(\bar{\Omega})}<\|v\|_{C(\bar{\Omega})}<s_{0}$;
(ii) if $\lambda \in\left(\underline{\lambda}, \lambda_{1}(a(\cdot)) / f_{0}\right]$, then there exists u and v such that $(\lambda, u),(\lambda, v) \in \mathcal{C}$ and $\|u\|_{C(\bar{\Omega})}<s_{0}<\|v\|_{C(\bar{\Omega})}$.
Define $\lambda^{*}=\sup \{\bar{\lambda}: \bar{\lambda}$ satisfies (i) $\}$ and $\lambda_{*}=\inf \{\underline{\lambda}: \underline{\lambda}$ satisfies (ii) $\}$. Then by the standard argument, (3.3), (3.4) has a positive solution at $\lambda=\lambda_{*}$ and $\lambda=\lambda^{*}$, respectively. Since \mathcal{C} passes through $\left(\lambda_{1}(a(\cdot)) / f_{0}, v_{2}\right)$ and $\left(\beta_{j}, u_{j}\right)$, Lemma 6.2 and 2.7 imply that, for each $\lambda>\lambda_{1}(a(\cdot)) / f_{0}$, there exists w such that $(\lambda, w) \in \mathcal{C}$ and $\|w\|_{C(\bar{\Omega})}>s_{0}$. This completes the proof.

Acknowledgements. R. Ma was supported by NSFC (No.12061064). The authors are very grateful to the anonymous referees for their valuable suggestions.

References

[1] S. Agmon, A. Douglis, L. Nirenberg; Estimates near the boundary for solution of elliptic partial differential equations satisfying general boundary conditions I. Comm Pure Appl Math., 12(1959), 623-727.
[2] T. Boggio; Sull'equilibrio delle piastre elastiche incastrate, Rend. Acc. Lincei, 10 (1901), 197-205.
[3] T. Boggio; Sulle funzione di Green dórdine m, Rend. Circ. Mat. Palermo, 20(1905), 97-135.
[4] C. V. Coffman; On the structure of solutions to $\Delta^{2} u=\lambda u$ which satisfy the clamped plate conditions on a right angle, SIAM J. Math. Anal., 13(1982), 746-757.
[5] Ch. V. Coffman, R. J. Duffin, D. H. Shaffer; The fundamental mode of vibration of a clamped annular plate is not of one sign. In Constructive approaches to mathematical models (Proc. Conf. in honor of R.J. Duffin, Pittsburgh, Pa., 1978), pages 267-277. Academic Press, New York, London, 1979.
[6] G. Caristi, E. Mitidieri; Harnack inequality and applications to solutions of biharmonic equations. Partial differential equations and functional analysis, 1-26. Oper. Theory Adv. Appl. 168, Birkhäuser, Basel, 2006.
[7] R. Dalmasso; Existence and uniqueness results for polyharmonic equations, Nonlinear Anal. TMA 36(1999), 131-137.
[8] R. J. Duffin; On a question of Hadamard concerning super-biharmonic functions, J. Math. Phys., 27 (1949), 253-258.
[9] E. N. Dancer; Global solution branches for positive mappings, Arch. Rat. Mech. Anal., 52(1973), 181-192.
[10] P. R. Garabedian; A partial differential equation arising in conformal mapping, Pacific J. Math., 1(1951), 485-524.
[11] F. Gazzola, H-Ch. Grunau, G. Sweers; Polyharmonic boundary value problems. Positivity preserving and nonlinear higher order elliptic equations in bounded domains, Lecture Notes in Mathematics 1991, Berlin, Springer-Verlag, 2010.
[12] D. Gilbarg, N. S. Trudinger; Elliptic partial differential equations of second order. Second edition. Springer-Verlag, Berlin, 1983.
[13] H. C. Grunau, G. Sweers; Positivity for perturbations of polyharmonic operators with Dirichlet boundary conditions in two dimensions, Math. Nachr., 179(1996), 89-102.
[14] H. C. Grunau, G. Sweers; Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions, Math. Ann., 307(1997), 589-626.
[15] H. C. Grunau, G. Sweers; Positivity properties of elliptic boundary value problems of higher order, Nonlinear Anal., 30(1997), 5251-5258.
[16] J. Hadamard; Mémoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées, Mémoires présentés par divers savants à lÁcadémie des Sciences, 33(1908), 1-128.
[17] J. Hadamard; Sur certains cas intéressants du problème biharmonique, Atti IVe Congr. Intern. Mat. Rome, (1908), 12-14.
[18] A. C. Lazer, P. J. McKenna; Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis, SIAM Rev., 32(4) (1990), 537-578.
[19] C. Loewner; On generation of solutions of the biharmonic equation in the plane by conformal mappings, Pacific J. Math., 3(1953), 417-436.
[20] H. Mâagli, F. Toumi, M. Zribi; Existence of positive solutions for some polyharmonic nonlinear boundary-value problems, Electron. J. Differential Equations, 58(2003), 19 pp.
[21] Ch. Pommerenke; Boundary behaviour of conformal maps, Berlin Heidelberg New York, Springer 1992.
[22] H. S. Shapiro, M. Tegmark; An elementary proof that the biharmonic Green function of an eccentric ellipse changes sign, SIAM Rev. 36(1994), 99-101.
[23] I. Sim, S. Tanaka; Three positive solutions for one-dimensional p-Laplacian problem with sign-changing weight, Appl. Math. Lett., 49(2015), 42-50.

Ruyun Ma (corresponding author)
School of Mathematics and Statistics, Xidian University, Xi'an 710071, China
Department of Mathematics, Northwest Normal University, Lanzhou 730070, China
Email address: ryma@xidian.edu.cn
Zhongzi Zhao
School of Mathematics and Statistics, Xidian University, Xi'an 710071, China
Email address: 15193193403@163.com
Dongliang Yan
Department of Mathematics, Northwest Normal University, Lanzhou 730070, China
Email address: yhululu@163.com

[^0]: 2010 Mathematics Subject Classification. 35J40, 35G30, 35B32, 35P30.
 Key words and phrases. Biharmonic operator; positive solutions; eigenvalue; bifurcation.
 (C)2021 This work is licensed under a CC BY 4.0 license.

 Published November 3, 2021.

