Liliane de Almeida Maia, Jose Carlos Oliveira Junior, Ricardo Ruviaro 
 
Abstract:
We study the quasilinear problem

where 
 is a bounded domain with
regular boundary 
, 
, 
, 
,
 is the outer normal derivative and g has a
subcritical growth in the sense of the trace Sobolev embedding. We prove a regularity
result for all weak solutions for a modified, and
introducing a new type of constraint, we obtain a multiplicity of solutions,
including the existence of a ground state. 
 
Published June 27, 2022.
Math Subject Classifications: 35J25, 35J62, 35B33.
Key Words: Quasilinear equations; variational methods; concave nonlinearities  critical exponent; ground state solution.
 DOI: https://doi.org/10.58997/ejde.sp.01.m3	    
Show me the PDF file (396 K), TEX file for this article.
![]()  | 
 Liliane de A. Maia  Universidade de Brasília Departamento de Matemática, 70.910-900 Brasília, DF, Brazil email: lilimaia@unb.br  | 
|---|---|
![]()  | 
  José Carlos Oliveira Junior  Universidade Federal do Tocantins Departamento de Matemática, 77.824-838 Araguaína, TO, Brazil email: jc.oliveira@uft.edu.br  | 
![]()  | 
 Ricardo Ruviaro  Universidade de Brasília Departamento de Matemática, 70.910-900 Brasília, DF, Brazil email: ruviaro@unb.br  | 
Return to the table of contents
 for this special issue.
Return to the EJDE web page