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YAMABE BOUNDARY PROBLEM WITH SCALAR-FLAT

MANIFOLDS TARGET

MARCO G. GHIMENTI, ANNA MARIA MICHELETTI

Abstract. We present a survey on the compactness of the set of solutions

for the Yamabe problem on manifolds with boundary. The stability of the

problem is also discussed.

1. Introduction

In the early 1960’s Yamabe [32] raised the famous question: given a compact
Riemaniann manifold without boundary, is it possible to find a conformal metric
which has constant scalar curvature? This problem, which carries the name of its
author, had a wide echo in the mathematical community, and gave rise to a large
number of related problems. For the history of the original Yamabe problem and
its solution, we refer to the fundamental survey of Lee and Parker [26].

One possible generalization of the classical Yamabe problem is to consider man-
ifolds with boundary. In this case, one asks if it is possible to find a conformal
metric for which both the scalar curvature on the interior of the manifold and the
mean curvature of the boundary are constant [23]. In this framework, a particular
interesting case is when the target manifold is scalar flat. In fact, finding a scalar
flat conformal metric with constant mean curvature of the boundary is not only
a possible generalization of Yamabe problem, but can be also viewed as an exten-
sion of Riemann conformal mapping theorem to any dimension. This problem was
firstly raised by Escobar in 1992 [11, 12], and was solved by Escobar himself, and
by Marques, Chen, Brendle, and Almaraz [1, 6, 29, 31].

In this survey we study the compactness of the set of solutions for the Yamabe
boundary problem when the target manifold is scalar flat. Also, we present some
result on the effect of perturbation of the curvatures on the compactness of the the
set of solutions.

2. Framework

We write the Yamabe boundary problem as an elliptic nonlinear partial differ-
ential equation. We recall that the conformal class of the metric g is

[g] = {ḡ = u
4

n−2 g, with u positive and smooth on M},
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and that we can compute Rḡ and hḡ, respectively the scalar curvature on the

manifold and the mean curvature of the boundary, respect to ḡ = u
4

n−2 g, as

Rḡ =
[
−∆gu+

n− 2

4(n− 1)
Rgu

]4(n− 1)

n− 2
u−

n+2
n−2

hḡ =
[ ∂
∂ν
u+

n− 2

2
hgu

] 2

n− 2
u−

n
n−2

where Rg, hg are respectively the scalar and the mean curvature referred to the
original metric g, −∆g is the Laplace-Beltrami operator and ν is the outward unit
normal vector to ∂M . With this in mind the problem is equivalent to finding a
positive solution to

−∆gu+
n− 2

4(n− 1)
Rgu = 0 in M

∂u

∂ν
+
n− 2

2
hgu = (n− 2)u

n
n−2 on ∂M

(2.1)

or, in a more compact, and conformally invariant form,

Lgu = 0 in M

Bgu+ (n− 2)u
n
n−2 = 0 on ∂M

, (2.2)

where Lg = ∆g − n−2
4(n−1)Rg and Bg = − ∂

∂ν −
n−2

2 hg are respectively the conformal

Laplacian and the conformal boundary operator.
We remark that the nonlinearity u

n
n−2 in the boundary equation is critical for

the immersion

H1
g (M)→ Ltg(∂M).

Here, by H1
g (M) we refer to the Hilbert space which is the completion of the C∞0 (M)

function with respect to the norm ‖ · ‖H generated by the scalar product

〈u, v〉H =

∫
M

g(∇u,∇v)dµg +

∫
M

uvdµg,

and by Lpg(M) and Ltg(∂M) we refer to usual Lebesgue spaces with respect to the
volume form of the manifold (resp. the boundary of the manifold). In the following,
where no ambiguity is possible, we refer to g(∇u,∇v) simply as ∇u · ∇v.

Problem (2.1) has a variational structure: a solution u of (2.1) is a critical point
of the functional quotient

Q(M) :=

∫
M

(
|∇u|2 + n−2

4(n−1)Rgu
2
)
dvg +

∫
∂M

n−2
2 hgu

2dσg( ∫
∂M
|u|

2(n−1)
n−2 dσg

)n−2
n−1

.

In analogy with the classical Yamabe problem, one can define the Yamabe quotient
as

Q(M,∂M) := inf
u∈H1

g(M)\{0}
Q(M)

and problem (2.1) has a unique solution if −∞ < Q(M,∂M) < 0, a unique solution
up to a constant factor ifQ(M,∂M) = 0, and at least one solution ifQ(M,∂M) > 0.
For the existence part, we refer to the cited papers [1, 6, 11, 12, 29, 31].

The manifolds for which Q(M,∂M) > 0 are called manifolds of positive type.
Since the solution typically is not unique, in these manifolds it is interesting to
study if the set of the solutions is compact for the C2 convergence. That is, if there
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exists a priori bounds in C2,α(M). The main result on compactness are cited in
the next section.

3. Compactness

For the Yamabe problem on manifolds without boundary, the compactness of
the set of solutions was proved, when M is not conformally equivalent to the round
sphere, at first for low dimensions by Druet [8], Marques [30], Li and Zhang [27, 28].
Finally, in the celebrated paper by Khuri, Marques and Schoen [24], it was proved
that compactness holds in dimension 3 ≤ n ≤ 24 with the additional hypothesis
of the positive mass theorem. Dimension n = 25 appears to be critical, in fact
counterexamples to compactness exist for any n ≥ 25 [5, 7].

The same dimension seems to play an important role also for the Yamabe bound-
ary problem (2.2). In fact, Almaraz [3], adapted the paper of Brendle and Marques
to prove that, for n ≥ 25, there exists a smooth Riemannian metric g on the Eu-
clidean ball B which is not conformally flat, for which ∂B is umbilic and there exists
a sequence of positive smooth functions {un}n for (2.2) such that ‖un‖C2(B) → +∞.

On the other hand, the question of compactness has not yet completely set-
tled. The Khuri, Marques, and Schoen procedure has been adapted to the Yamabe
boundary problem for scalar flat curvature in various settings but there are still
open problems, and a general theorem for n ≤ 25 is missing. Throughout this
section, we will examine the various results present in literature up to now. We will
try to give an idea of the common strategy to achieve these results.

When dealing with compactness of the boundary Yamabe problem, we study the
equation

Lgu = 0 in M

Bgu+ (n− 2)up = 0 on ∂M
(3.1)

for 1 ≤ p ≤ n
n−2 . The reason to consider (3.1) is twofold. On the one hand, the

technique to prove compactness for the critical nonlinearity extends, almost for free,
to the subcritical case. On the other hand, this result of compactness provides also
an alternative proof of the existence of solution for Yamabe problem.

In Yamabe problems, often low dimensions are special, and require different
strategies. Indeed, for Yamabe boundary problems compactness holds without
further assumptions in dimensions n = 3, 4. More precisely:

Theorem 3.1. Let (M, g) be an n-dimensional manifold of positive type, not con-
formally equivalent to the standard ball. Let n = 3, 4. Then for each p̄ ∈ (1, n

n−2 ),

there exists C > 0 such that if p ∈ [p̄, n
n−2 ] and u is a solution to (3.1),

C−1 ≤ u ≤ C, and ‖u‖C2,α(M) ≤ C.

for some α ∈ (0, 1).

This theorem has been proved for n = 3 by Almaraz, de Queiroz and Wang in
[4], and for n = 4 by Kim, Musso, and Wei in [25].

For dimension n ≥ 5 the geometry of the boundary appears to be important to
rule out the possibility of blow up. Let us introduce the definition of umbilic and
non umbilic boundary.

Definition 3.2. A manifold M has non umbilic boundary if the trace-free second
fundamental form of ∂M is everywhere different from zero, while M has umbilic
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boundary if the trace-free second fundamental form of ∂M vanishes everywhere on
the boundary.

When the boundary is non umbilic, it is possible to prove that, if a sequence un
blows-up, that is if there exists a sequence xn → x0 such that un(xn)→ +∞, then
x0 ∈ ∂M and the trace-free second fundamental form vanishes at x0. This is the
key point of the following result, proved by Almaraz in [2] for dimension n ≥ 7 and
extended by Kim, Musso and Wei in [25] to dimensions n = 5, 6.

Theorem 3.3. Let (M, g) be a Riemannian manifold of positive type with regular
boundary and dimension n ≥ 5. Assume that the trace-free 2nd fundamental form
of ∂M is nonzero everywhere. Then for each p̄ > 1, there exists C > 0 such that
for any p ∈ [p̄, n

n−2 ] and any u > 0, solution to equation (3.1),

C−1 ≤ u ≤ C and ‖u‖C2,α(M) ≤ C.

The opposite situation is when the manifold has umbilic boundary. In this sce-
nario, the first result is due to Felli and Ahmedou [13], which considers a locally
conformally flat manifold, and uses the positive mass theorem, which in these man-
ifolds is known to hold, to avoid the possibility of blow up. More precisely, their
result is:

Theorem 3.4. Let (M, g) be a locally conformally flat Riemannian manifold of
positive type with regular umbilic boundary and dimension n ≥ 3. Assume that
(M, g) is not conformally equivalent to the standard ball. Then, given p̄ > 1, there
exists C > 0 such that for each p ∈ [p̄, n

n−2 ] and u > 0, solution to the equation

(3.1),

C−1 ≤ u ≤ C and ‖u‖C2,α(M) ≤ C
for some 0 < α < 1.

When the boundary is umbilic, another approach is to assume that the Weyl
tensor never vanishes on the boundary. This plays the same role of the tensor of
the second fundamental form, and could be used to get the following result [14, 16].

Theorem 3.5. Let (M, g) a smooth, n-dimensional Riemannian manifold of posi-
tive type with regular umbilic boundary and dimension n ≥ 6. Assume that the Weyl
tensor Wg is never vanishing on ∂M . Then, given p̄ > 1, there exists a positive
constant C such that, for any p ∈ [p̄, n

n−2 ] and for any u > 0, solution of (3.1),

C−1 ≤ u ≤ C and ‖u‖C2,α(M) ≤ C
for some 0 < α < 1.

Theorems 3.3 and 3.5 share the same strategy, inspired by compactness results
for classical Yamabe problem. A key point is to give a sharp precise description of a
solution around a blow up point. The usual approximation of a rescaled solution is

by the standard bubble defined as V (x) = (1+|x|) 2−n
2 . Yamabe boundary problems

are no exception, in fact it can be proved that if there exists a sequence {un}n of
solutions of (2.2), and a sequence xn → x0 such that un(xn)→ +∞, then x0 ∈ ∂M
and un, read on Rn+ and suitably rescaled, is close to the boundary bubble

U :=
1

(|ȳ|2 + (1 + y2
n))

n−2
2

(3.2)

where y = (ȳ, yn) ∈ Rn+, ȳ ∈ Rn and yn ≥ 0.
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Unfortunately, this information is not sufficiently accurate to get a result. It is
necessary to find a sharp correction term which allows a better description of the
solution near a blow up point. This correction term depends on the expansion of
the metric in Fermi normal coordinates around x0 ∈ ∂M , and so on the geometry
of the boundary near x0. In the case of non umbilic boundary, the correction term
is a function γ which solves the following linear problem

−∆γ = 2hij(q)t∂
2
ijU on Rn+;

∂γ

∂yn
= −nU

2
n−2 γ on ∂Rn+.

(3.3)

while for umbilic boundary γ solves

−∆γ =
[1
3
R̄ijkl(q)ykyl +Rninj(q)y

2
n

]
∂2
ijU on Rn+

∂γ

∂yn
= −nU

2
n−2 γ on ∂Rn+

(3.4)

where U is the standard bubble for boundary problems defined in (3.2) and, as
claimed before, the right hand side of the equation depends on the expansion of
the metric near x0 and keep track of the geometry of the boundary. Here hij is the
trace free second fundamental form, Rijkl is the curvature tensor, and R̄ikjl is the
curvature tensor related to the sub-manifold ∂M .

This description, combined with a Pohozaev type inequality, states that in a
blow up point the trace free second fundamental form, for non umbilic boundaries,
or the Weyl tensor, for umbilic boundaries, must vanish. This allows to prove the
compactness theorems.

As far as we known the compactness of solutions when the boundary has both
umbilic and non umbilic point has not been considered yet. One reason could be
the following: Umbilic and non umbilic blow up points gave rise to different sharp
correction terms, and a combined approach which unifies these two cases is not easy
to perform.

For umbilic boundaries, the case of dimension n = 5 when the Weyl tensor is
non vanishing is still open. Dealing with low dimension requires a very precise
knowledge of the correction term γ defined in (3.4). For dimensions n = 6, 7, the
estimates of [16] are enough to get the result. For n = 5 a more refined analysis is
needed.

One final remark. For non umbilic boundary manifold, compactness holds for all
dimensions, by Theorems 3.3 and 3.1, while for umbilic boundary manifold, there
exists a non compactness result for dimension n ≥ 25 ([3]), analogous to what
happens in boundaryless manifolds ([7]). At this point one could ask if there is
the same similarity between Yamabe problem on manifolds without boundary and
Yamabe problem on scalar flat umbilic boundary also for which competes compact-
ness results. In other words, it would be interesting to know if, for dimensions
n ≤ 24, compactness holds on manifolds not locally conformally flat with umbilic
boundary, with -at most- the only assumption of positive mass theorem.

4. Stability

Another interesting point is the question of stability: one can ask whether or
not the compactness is still true under perturbation of the problem. For Yamabe
classical problem Druet, Hebey and Robert in a series of papers [8, 9, 10] studied the
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stability of the problem under perturbation of the scalar curvature. In particular,

they proved that the set of solutions of −∆gu+ n−2
4(n−1)a(x)u = cu

n+2
n−2 in M is still

compact if a(x) ≤ Rg(x) on M , so problem is stable with respect of perturbation
of scalar curvature from below. On the other hand, they found counterexamples to
compactness, and so instability, when a(x) is greater than Rg(x).

The problem of the stability is equivalent to having or not uniform a priori C2,α

estimates for the solutions of perturbed problem.
In the same spirit, the authors and Angela Pistoia [15, 21, 22, 17, 20] studied

the compactness of the set of solutions to the Yamabe boundary problem under
perturbations of the mean and of the scalar curvature. In other words, given α, β :
M → R smooth functions, we study the perturbed problem

−∆gu+
n− 2

4(n− 1)
Rgu+ ε1αu = 0 in M

∂u

∂ν
+
n− 2

2
hgu+ ε2βu = (n− 2)u

n
n−2 on ∂M

(4.1)

where ε1, ε2 are small positive parameters, and we ask if the set of solutions has
C2,α uniform bounds, or if there exists a sequence (ε1, ε2) for which the sequence of
solutions {uε1,ε2} blows up. Again, we studied the case [15, 20, 22] of manifold with
umbilic boundary and non umbilic boundary. For umbilic boundary manifolds, we
have the following results.

Theorem 4.1. Let (M, g) be a smooth, n-dimensional Riemannian manifold of
positive type not conformally equivalent to the standard ball with regular umbilic
boundary ∂M . Let α, β : M → R be smooth functions such that α, β < 0 on ∂M .
Suppose that n ≥ 8 and that the Weyl tensor Wg is not vanishing on ∂M . Then,
there exists a positive constant C, 0 < ε̄ < 1 such that, for any 0 ≤ ε1, ε2 ≤ ε̄ and
for any u > 0, solution of (4.1),

C−1 ≤ u ≤ C and ‖u‖C2,η(M) ≤ C

for some 0 < η < 1. The constant C does not depend on u, ε1, ε2.

Theorem 4.2. Let (M, g) be a smooth, n-dimensional Riemannian manifold of
positive type not conformally equivalent to the standard ball with regular umbilic
boundary ∂M . Let α, β : M → R be smooth functions. Suppose that n ≥ 8 and that
the Weyl tensor Wg is not vanishing on ∂M . If α > 0 on ∂M or β > 0 on ∂M ,
then there exists a sequence of solutions uε1,ε2 of (4.1) which blows up at a point
of the boundary when (ε1, ε2)→ (0, 0).

Note that these results are analogous to what happens for classical Yamabe
problem. Indeed, if we perturb from below one or both the two curvatures, the set
of solution is still compact, while it is enough to perturb one of the curvature from
above to lose compactness. In [20, Remark 27] examples of sign changing α or β
for which the solutions blow up are provided.

Quite surprisingly, the analogy between stability of classical and boundary Yam-
abe problem is lost when dealing with non umbilic boundary manifolds. We have
the following result [15, 17, 21]

Theorem 4.3. Let (M, g) be a smooth, n-dimensional Riemannian manifold of
positive type with regular boundary ∂M . Suppose that n ≥ 7 and that π(x), the trace
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free second fundamental form of ∂M , is non zero everywhere. Let α, β : M → R be
smooth functions such that β < 0 on ∂M and

max
q∈∂M

{
α(q)− n− 6

4(n− 1)(n− 2)2
‖π(q)‖2

}
< 0.

Then, there exist two constants C > 0 and 0 < ε̄ < 1 such that, for any 0 ≤ ε1, ε2 ≤
ε̄ and for any u > 0 solution of (4.1), it holds

C−1 ≤ u ≤ C and ‖u‖C2,η(M) ≤ C

for some 0 < η < 1. The constant C does not depend on u, ε1, ε2.

Theorem 4.4. Let (M, g) a smooth, n-dimensional Riemannian manifold of pos-
itive type with regular boundary ∂M . Suppose that n ≥ 7 and that the trace free
second fundamental form of ∂M , is non zero everywhere. Let α, β : M → R be
smooth functions.

• If β > 0 on ∂M then for ε1, ε2 > 0 small enough there exists a sequence
of solutions uε1,ε2 of (4.1) which blows up at a suitable point of ∂M as
(ε1, ε2)→ (0, 0).
• If β < 0 on ∂M , ε1 = 1, α > 0 on M and infq∈∂M α(q) + 1

Bϕ(q) > 0, then
for ε2 > 0 small enough there exists a sequence of solutions uε2 of (4.1)
which blows up at a suitable point of ∂M as ε2 → 0.

Here B is a positive constant which depends only on the dimension of M and ϕ(q) :=
1
2

∫
Rn+
γq∆γqdy−C‖π(q)‖2 ≤ 0, where C is also a positive constant depending only

on the dimension.

Theorem 4.3 states that it is possible to have compactness also for perturbation
from above of the scalar curvature, as long as the perturbation is not to big with
respect of the trace free second fundamental form. This was somewhat unexpected,
and deeply related to the non umbilicity of the boundary. In fact it turns out
that the second fundamental form and the perturbation share the same order of
magnitude in the estimates. This makes possible to push a little bit the perturbation
above the scalar curvature, compensating it with the second fundamental form.

5. Supercritical case

All compactness theorems for Yamabe boundary problem in Section 3 hold when
the exponent p in (3.1) belongs to an interval [p̄, n

n−2 ] for some p̄ > 1. These results
can be also interpreted in terms of stability: we can say that the Yamabe boundary
problem (2.1) is stable for perturbation of the critical exponent from below. At this
point it is natural to ask wether if problem (2.1) is stable for perturbation of the
critical exponent from above. In fact, in [18, 19] the problem

−∆gu+
n− 2

4(n− 1)
Rgu = 0 in M

∂u

∂ν
+
n− 2

2
hgu = (n− 2)u

n
n−2 +ε on ∂M

(5.1)

is studied for ε > 0, and the authors give the following negative answer.

Theorem 5.1. Let M be a manifold of positive type with boundary, and let ε > 0.

• If M has non umbilic boundary, assume n ≥ 7
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• In M has umbilic boundary, assume n ≥ 8 and that the Weyl tensor is not
vanishing on ∂M .

Then there exists a family of solutions uε of (5.1) which blows up at a point on ∂M
as ε→ 0+.

The proof of Theorem 5.1 relies on the Lyapunov-Schmidt reduction. In partic-
ular, for any -sufficiently small- positive ε, it is possible to construct a solution uε
of (5.1) which is a sum of a boundary bubble, the sharp correction term defined
in (3.3) or in (3.4), both suitably rescaled and centered in a point on ∂M , and
a small remainder term. The function uε blows up since the rescaling forces the
maximum value of the bubble to diverge. As a byproduct, these proofs also con-
struct an almost explicit solution to the supercritical Yamabe boundary problem,
and supercritical solution are, in general, more difficult to find than their subcrit-
ical counterparts. Theorem 5.1, combined with the theorems in section 3, states
that, given p̄ ∈ (1, n

n−2 ) and ε̄ > 0 sufficiently small, there exist solutions up of

(2.2) for all p ∈ [p̄, n
n−2 + ε̄]. In addiction, for p ≤ n

n−2 , up belongs to C2(M)

and ‖up‖C2 ≤ C, for a positive constant C not depending on p and up, while, for

p > n
n−2 , up belongs to H1 ∩ L

2(n−1)
n−2 +nε, where ε = p− n

n−2 , but the L∞ norm of
up could blow up as p approaches n

n−2 from above.
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