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OPTIMAL CONDITIONS FOR THE MAXIMUM PRINCIPLE

FOR SECOND-ORDER PERIODIC PROBLEMS

GABRIELA HOLUBOVÁ

Abstract. We provide alternate necessary and/or sufficient conditions on the
sign-changing coefficient p(t) for the maximum principle for the second-order

periodic problem u′′ = p(t)u + q(t) to hold, i.e., for nonnegative q to yield a

nonpositive periodic solution u.

1. Introduction and problem formulation

We consider the linear second-order periodic problem

u′′ = p(t)u+ q(t), u(0) = u(ω), u′(0) = u′(ω) (1.1)

and provide new answers to the fundamental question

For which p a nonnegative q results in a nonpositive u?

We can find several necessary and/or sufficient conditions on p in the extensive
relevant literature. See for example [2, 6, 10] and references therein. Optimality and
especially applicability and verifiability of these conditions are crucial for further
studies of related nonlinear problems (see, e.g., [7]).

Inspired by our previous results concerning the fourth-order problems [3, 4, 5],
we state alternative series of (optimal and/or verifiable) conditions on p based on
the principal weighted eigenvalue of the corresponding linear operator. For details,
see our main results in Section 2 and their consequences in Section 3. In Section 4
we present two examples and comparison with known conditions.

Since our text is mainly based on [6], we keep the same notation and terminology
as much as possible. Throughout this article, we consider p, q ∈ Lω which is the
space of ω-periodic functions that are Lebesgue integrable on (0, ω). By a solution
to (1.1) we mean a differentiable function u with absolutely continuous derivative
in [0, ω] that satisfies (1.1) almost everywhere on [0, ω]. We let Cω denote the space
of ω-periodic continuous functions with norm given by ‖u‖ = maxt∈[0,ω] |u(t)|.
Definition 1.1 (Lomtatidze [6]). We say that the function p ∈ Lω belongs to the
set V−(ω) if for any differentiable function u with absolutely continuous derivative
on [0, ω], and satisfying

u′′(t) ≥ p(t)u(t) for a.e. t ∈ [0, ω], u(0) = u(ω), u′(0) = u′(ω),
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the inequality u(t) ≤ 0 holds for all t ∈ [0, ω].

In fact (see [6]), if p ∈ V−(ω), then for any q ∈ Lω, q 6≡ 0, q(t) ≥ 0 a.e. on
[0, ω], the periodic problem (1.1) possesses a unique solution u satisfying u(t) < 0
on [0, ω].

Let us note that p ∈ V−(ω) is equivalent to the statement that the maximum
principle is satisfied by (1.1), or that the linear periodic operator u 7→ −u′′+ p(t)u
is (strictly) inverse positive. The following basic properties of V−(ω) can be found
in [6]:

(i) If p(t) ≥ 0 for a.e. t ∈ [0, ω] and p 6≡ 0, then p ∈ V−(ω).
(ii) If p0(t) ∈ V−(ω) and p(t) ≥ p0(t) for a.e. t ∈ [0, ω], then p ∈ V−(ω) as well.
(iii) The set V−(ω) is unbounded, open and convex.
(iv) If p ∈ V−(ω), then

∫ ω
0
p(t) dt > 0.

Because of conditions (i) and (iv), it makes sense to consider only sign-changing
functions p for further study.

2. Main results

Theorem 2.1. Let p ∈ Lω with p(t) = p1(t) − p2(t), pi(t) ≥ 0 for a.e. t ∈ [0, ω],
pi 6≡ 0, i = 1, 2. Then p ∈ V−(ω) if and only if the principal (weighted) eigenvalue
λ0 of the problem

− y′′ + p1(t)y = λp2(t)y, y(0) = y(ω), y′(0) = y′(ω) (2.1)

satisfies λ0 > 1.

Theorem 2.1 can be reformulated as follows.

Theorem 2.2. Let p ∈ Lω with p(t) = p1(t) − p2(t), pi(t) ≥ 0 for a.e. t ∈ [0, ω],
pi 6≡ 0, i = 1, 2. Let Gp1(t, s) be the Green function related to the left hand side of
(2.1), and let T : Cω → Cω be a linear operator defined by

Ty(t) :=

∫ ω

0

Gp1(t, s)p2(s)y(s) ds. (2.2)

Then p ∈ V−(ω) if and only if the principal characteristic value λ0 of T (equal to
1/r(T ) with r(T ) being the spectral radius of T ) satisfies λ0 > 1.

Before we prove Theorems 2.1 and 2.2, let us note that because of the non-
negativity and nontriviality of p1, the Green function Gp1 exists, it is unique and
continuous in both variables, hence the operator T is well defined. Moreover, it is
compact. Since the eigenvalue problem (2.1) is equivalent to y = λTy, i.e., λ is an
eigenvalue of (2.1) if and only if it is the characteristic value of T , we will prove
both Theorems 2.1 and 2.2 together. Finally, let us recall that we speak about the
principal eigenvalue (or principal characteristic value), if (at least one, in general)
corresponding eigenfunction is of constant sign in [0, ω].

Proof of Theorems 2.1 and 2.2. From the assumptions on p1, p2, the Green func-
tion Gp1 satisfies Gp1(t, s) > 0 a.e. on [0, ω]× [0, ω] and the spectral radius r(T ) of
T is positive as well. Moreover, 1/r(T ) corresponds to the principal characteristic
value λ0 of T . That is, (2.1) possesses the principal eigenvalue λ0 > 0 with the
constant-sign eigenfunction y0 (cf., e.g., [8, Theorem 2.6 and Remark 2.1]).
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First, we prove the necessity. Let p = p1 − p2 ∈ V−(ω), i.e., for any q ∈ Lω,
q(t) ≥ 0, q 6≡ 0, the problem

− u′′ + p1(t)u = p2(t)u− q(t), u(0) = u(ω), u′(0) = u′(ω) (2.3)

possesses a strictly negative solution u. Multiplying the equation in (2.3) by the
eigenfunction y0 > 0 and integrating over (0, ω), we easily obtain∫ ω

0

(−u′′ + p1u)y0 =

∫ ω

0

(−y′′0 + p1y0)u = λ0

∫ ω

0

p2uy0 =

∫ ω

0

p2uy0 −
∫ ω

0

qy0.

The last equality gives (1− λ0)
∫ ω

0
p2uy0 =

∫ ω
0
qy0 and the sign properties of p2, q,

u and y0 imply λ0 > 1.
To prove the sufficiency, we use successive iterations. Let us consider q ∈ Lω,

q 6≡ 0, q(t) ≥ 0 arbitrary but fixed, and denote

q∗(t) :=

∫ ω

0

Gp1(t, s)q(s) ds.

We have q∗ ∈ Cω, q∗(t) > 0 for t ∈ [0, ω] and (2.3) is equivalent to u = Tu − q∗.
Now, we are ready to define a sequence {un}∞n=0 ⊂ Cω using the recurrence formula

un+1 = Tun − q∗ with u0 ≡ 0. (2.4)

From the assumptions on p1, p2, the operator T is strictly monotone increasing
on Cω ordered by the cone C+

ω = {u ∈ Cω, u(t) ≥ 0 for every t ∈ [0, ω]}, and we
obtain

u0 ≡ 0 > u1 = −q∗ > u2 > · · · > un > . . . .

Moreover,

un = Tun−1 − q∗ = T (Tun−2 − q∗)− q∗ = −
n−1∑
k=0

T kq∗

and hence

‖un‖ ≤ ‖q∗‖
n−1∑
k=0

‖T k‖ ≤ ‖q∗‖
∞∑
k=0

‖T k‖.

Using Gelfand’s formula r(T ) = limk→∞ ‖T k‖1/k and the assumption 1/λ0 =
r(T ) < 1, we gain convergence of the series

∑
‖T k‖ and hence uniform boundedness

of {un} in Cω. Compactness of T and monotonicity of {un} yield the convergence
un → u in Cω with u(t) < 0 for all t ∈ [0, ω] being the solution of (2.3). Thus
p = p1 − p2 ∈ V−(ω). �

The following lemma shows that the sign of (λ0 − 1) does not depend on the
choice of p1, p2.

Lemma 2.3. Let λ0 be the principal eigenvalue of (2.1) with some p1 and p2

satisfying p1(t) − p2(t) = p(t), pi(t) ≥ 0 for a.e. t ∈ [0, ω], pi 6≡ 0, i = 1, 2. Then
sgn(λ0 − 1) is independent on the choice of p1, p2.

Proof. Let p(t) = p1(t) − p2(t) = p̄1(t) − p̄2(t) with p1,2, p̄1,2 all nonnegative and
nontrivial. Let λ0 be the principal eigenvalue of (2.1) with p1,2 and let y(t) be the
corresponding positive eigenfunction. Similarly, let λ̄0 be the principal eigenvalue
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of (2.1) with p̄1,2 and ȳ(t) be the corresponding positive eigenfunction. Multiplying
(2.1) by ȳ, integrating over (0, ω) and using

∫ ω
0
y′′ȳ =

∫ ω
0
yȳ′′ yields∫ ω

0

p1(t)y(t)ȳ(t) dt− λ0

∫ ω

0

p2(t)y(t)ȳ(t) dt

=

∫ ω

0

p̄1(t)y(t)ȳ(t) dt− λ̄0

∫ ω

0

p̄2(t)y(t)ȳ(t) dt.

Since p1 − p̄1 = p2 − p̄2, we obtain

(1− λ0)

∫ ω

0

p2(t)y(t)ȳ(t) dt = (1− λ̄0)

∫ ω

0

p̄2(t)y(t)ȳ(t) dt.

Positivity of both y, ȳ and nonnegativity of p2, p̄2 means that sgn(1 − λ0) =
sgn(1− λ̄0), which we wanted to prove. �

Remark 2.4. The natural decomposition of sign-changing p is p1(t) = p+(t),
p2(t) = p−(t), with p±(t) = max{±p(t), 0} being the positive and negative parts
of p. However this choice is not convenient for computational purposes since
min p+(t) = 0 (cf. Corollary 3.7 and the comment above). In further text, we
will mainly use decomposition

p1(t) = (p(t)− c)+ + c, p2(t) = (p(t)− c)− (2.5)

with some fixed real constant 0 < c ≤ pM := ess supt∈[0,ω] p(t). Notice that for

c = pM ∈ R, p1 is constant (p1(t) ≡ pM ).

3. Estimates of λ0 and consequences of main results

To find the precise value of λ0 is not an easy task, however, for its estimates we
can exploit, e.g., the following results.

Lemma 3.1 (Webb and Lan [8]). Let λ0 be the principal eigenvalue of (2.1) and
p1, p2, and Gp1 be as in Theorem 2.2. Then m ≤ λ0 ≤M , where

m =
(

sup
0≤t≤ω

∫ ω

0

Gp1(t, s)p2(s) ds
)−1

,

M = inf
0≤a<b≤ω

(
inf

a≤t≤b

∫ b

a

Gp1(t, s)p2(s) ds
)−1

.

Lemma 3.2 (Bo Yang [9]). In addition to the assumptions of Lemma 3.1, let θ0, σ0

be a priori bounds for the constant-sign eigenfunction y0 corresponding to λ0, i.e.,
σ0 ≤ y0/‖y0‖ ≤ θ0. Let us define sequences {σn} and {θn} by

θn+1(t) =

∫ ω

0

Gp1(t, s)p2(s)θn(s) ds, σn+1(t) =

∫ ω

0

Gp1(t, s)p2(s)σn(s) ds,

and the values

mn :=
(

sup
0≤t≤ω

θn(t)
)−1/n

and Mn :=
(

sup
0≤t≤ω

σn(t)
)−1/n

.

Then for each n ∈ N, we have mn ≤ λ0 ≤Mn.

Remark 3.3. Let us note that the original result in [8] is formulated for much more
general kernels and weight functions, and Gp1 , p2 meet all the required assumptions.
On the other hand, result in [9] is stated for the particular (n − 1, 1) conjugate
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boundary value problem but it is valid for a wider class of operators including our
case.

Remark 3.4. Obviously, we can choose θ0 ≡ 1 and then m1 from Lemma 3.2
coincides with m given by Lemma 3.1. Moreover, if both p1, p2 are positive constant
functions, then m = λ0 = p1/p2 with y0 ≡ 1 being the corresponding constant-sign
eigenfunction. To find the lower bound σ0, we can proceed similarly as in [9]. In
particular, for any y satisfying −y′′ + p1(t)y ≥ 0 and y(t) > 0 for all t ∈ [0, ω], we
can write

‖y(t)‖ = max
t∈[0,ω]

y(t) = max
t∈[0,ω]

∫ ω

0

Gp1(t, s) (−y′′(s) + p1(s)y(s)) ds

≤ max
(t,s)

Gp1(t, s)

∫ 1

0

(−y′′(s) + p1(s)y(s)) ds.

Similarly,

y(t) ≥ min
(t,s)

Gp1(t, s)

∫ 1

0

(−y′′(s) + p1(s)y(s)) ds ≥
min(t,s)Gp1(t, s)

max(t,s)Gp1(t, s)
‖y‖.

Hence, we can take σ0 = min(t,s)Gp1(t, s)/max(t,s)Gp1(t, s) > 0.

Now, we are ready to formulate several corollaries of our main results that provide
verifiable necessary and sufficient conditions for p ∈ V−(ω). The first one is a direct
consequence of Theorem 2.2 and Lemma 3.1.

Corollary 3.5. Let p ∈ Lω be decomposed to p(t) = p1(t) − p2(t) with pi(t) ≥ 0
for a.e. t ∈ [0, ω], pi 6≡ 0, i = 1, 2. If

sup
0≤t≤ω

∫ ω

0

Gp1(t, s)p2(s) ds < 1, (3.1)

then p ∈ V−(ω). If for some [a, b] ⊂ [0, ω] we have

inf
a≤t≤b

∫ b

a

Gp1(t, s)p2(s) ds > 1, (3.2)

then p 6∈ V−(ω).

Similarly, Lemma 3.2 provides the following conditions.

Corollary 3.6. Let p ∈ Lω be decomposed to p(t) = p1(t) − p2(t) with pi(t) ≥ 0
for a.e. t ∈ [0, ω], pi 6≡ 0, i = 1, 2, and let θn, σn be defined as in Lemma 3.2. If
there exists n ∈ N such that

sup
0≤t≤ω

θn(t) < 1, (3.3)

then p ∈ V−(ω). Also, if there exists n ∈ N such that

sup
0≤t≤ω

σn(t) > 1, (3.4)

then p 6∈ V−(ω).

If p1 is bounded away from zero, i.e., if there exists c > 0 such that p1(t) ≥ c
for a.e. t ∈ [0, ω], then from the comparison principle, Gp1(t, s) ≤ Gc(t, s) for all
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(t, s) ∈ [0, ω]× [0, ω]. Moreover, Gc with constant positive c can be given explicitly,
namely (see, e.g., [1])

Gc(t, s) =


cosh

√
c(t−s−ω

2 )

2
√
c sinh

√
cω

2
, 0 ≤ s ≤ t ≤ ω,

cosh
√
c(t−s+ ω

2 )

2
√
c sinh

√
cω

2
, 0 ≤ t ≤ s ≤ ω.

(3.5)

Hence, we can state stricter but easier to apply sufficient condition. In particular,
taking p1(t) = (p(t)− c)+ + c, p2(t) = (p(t)− c)− with c > 0, Corollary 3.5 directly
implies the following assertion.

Corollary 3.7. Let p ∈ Lω and Gc be given by (3.5). If there exists c > 0 such
that

sup
0≤t≤ω

∫ ω

0

Gc(t, s)(p(s)− c)− ds < 1, (3.6)

then p ∈ V−(ω).

Finally, using that maxGc(t, s) = Gc(t, t) =
(
2
√
c tanh

√
cω2
)−1

and Gc(t, s)
is non-constant, we can obtain the simplest sufficient condition that fits exactly
Theorem 11.4 in [6].

Corollary 3.8. Let p ∈ Lω. If there exists c > 0 such that∫ ω

0

(p(s)− c)−(s) ds ≤ 2
√
c tanh

√
c
ω

2
, (3.7)

then p ∈ V−(ω).

Remark 3.9. From the opposite point of view, if p is bounded from above, taking
p1(t) ≡ pM = ess supt∈[0,ω] p(t), p2(t) = pM − p(t) and GpM given by (3.5) with
c = pM , the latter statement in Corollary 3.5 directly implies that if for some
[a, b] ⊂ [0, ω]

inf
a≤t≤b

∫ b

a

GpM (t, s)(pM − p(s)) ds > 1, (3.8)

then p 6∈ V−(ω). Since
∫ ω

0
GpM (t, s) ds = 1/pM , condition (3.8) with [a, b] = [0, ω]

reads as follows

sup
0≤t≤ω

∫ ω

0

GpM (t, s)p(s) ds < 0 .

Similarly, the latter statement in Corollary 3.6 implies that if

sup
0≤t≤ω

∫ ω

0

GpM (t, s)(pM − p(s))σ0(t) ds > 1, (3.9)

then p 6∈ V−(ω). Since minGpM (t, s) = GpM (ω2 , 0) =
(
2
√
pM sinh

√
pM

ω
2

)−1
, it

follows (3.9) with the choice σ0 = minGpM /maxGpM = cosh−1√pM ω
2 (cf. Remark

3.4) reads as follows

inf
0≤t≤ω

∫ ω

0

GpM (t, s)p(s) ds < 1− cosh
√
pM

ω

2
.

From the profile of GpM , neither of these conditions provide better information
than the already known implication

∫ ω
0
p(t) dt ≤ 0 ⇒ p 6∈ V−(ω).
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4. Examples and comparison of results

In this section, we consider ω = 2π and two 2π-periodic test functions:

p(t) = α2 + β cos t and p(t) =

{
α2 + β for t ∈ (0, π2 ) ∪ ( 3π

2 , 2π)

α2 − β for t ∈ (π2 ,
3π
2 ).

and their various decompositions. The first function was used as an example in [6].
The latter (step) function has intentionally the same parameters and nodal do-
mains. Its advantage is that we are able to find directly the corresponding principal
eigenvalue.

Using Wolfram Mathematica, we illustrate our results in Sections 2 and 3 for
these functions in the αβ-plane, and compare them with sufficient conditions stated
in [6, Theorems 11.1, 11.3, 11.4, 11.5].

Example 4.1. Let ω = 2π and

p(t) = α2 + β cos t (4.1)

with α, β ∈ R+. For this function, the best sufficient condition in [6] is provided by
Theorem 11.1 therein. That’s why we take it as the reference set for our comparison.
Let us also recall that [6, Theorem 11.4] coincides with our Corollary 3.8 and [6,
Theorem 11.5] gives the sufficient condition α ≥ β for p ∈ V−(ω).

We start with the decomposition

p1(t) ≡ pM = α2 + β, p2(t) = pM − p(t) = β(1− cos t).

For this choice, condition (3.1) of Corollary 3.5 coincides with condition (3.6) of
Corollary 3.7 and with (3.3) for n = 1 of Corollary 3.6. These are visualized in
αβ-plane in Figure 1 left (orange area) and we see that they do not provide better
results than [6, Theorem 11.1] (blue area). Figure 1 right (orange area) illustrates
(3.3) for n = 3, i.e. the third iteration of the lower estimate of λ0. Here we can see
a considerable improvement.

Next we use decomposition (2.5) with c = α2, i.e., c is the mean value of p(t)
and

p1(t) = α2 + β(cos t)+, p2(t) = β(cos t)−.

In this case, we are not able to determine Gp1 and have to be content with the
weaker condition (3.6) of Corollary 3.7 involving Gα2 . The obtained region in αβ-
plane for which p(t) ∈ V−(2π) is visualized in Figure 2 in green color. Picture on
the left illustrates comparison with result of [6, Theorem 11.1] (blue area), picture
on the right illustrates comparison with our third iteration (3.3) for the previous
choice c = pM (orange area). In general, we can observe that smaller c improves
the sufficient condition for larger values of α, β, but spoils the result close to the
origin. Moreover, for greater c, the higher iterations in (3.3) are easier to compute.

Example 4.2. Let ω = 2π and

p(t) =

{
α2 + β for t ∈ (0, π2 ) ∪ ( 3π

2 , 2π)

α2 − β for t ∈ (π2 ,
3π
2 ).

(4.2)

As we mentioned above, for this step function p, we are able to find directly the
corresponding principal eigenvalue λ0. In particular, choosing, e.g.,

p1(t) ≡ pM = α2 + β, p2(t) = pM − p(t) =

{
2β for t ∈ (π2 ,

3π
2 ),

0 otherwise,
(4.3)
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Figure 1. Values of α, β for which p(t) = α2 + β cos t ∈ V−(2π).
Blue areas correspond to the condition given by [6, Theorem 11.1].
Orange areas correspond to the decomposition with p1(t) ≡ pM
and the condition (3.3) of Corollary 3.6 for n = 1 (left) and n = 3
(right).
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Figure 2. Values of α, β for which p(t) = α2 + β cos t ∈ V−(2π).
Green areas correspond to the decomposition (2.5) with c = α2

and the condition (3.6) of Corollary 3.7. Blue area on the left
corresponds to the condition given by [6, Theorem 11.1]. Orange
area on the right is the same as in Figure 1 (right).

we easily find out that λ0 corresponds to the first positive root of the equation√
α2 + β tanh

√
α2 + β

π

2
=
√

2βx− α2 − β tan
√

2βx− α2 − β π
2
. (4.4)
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The corresponding normalized constant-sign eigenfuction takes the form

y(t) =


A cosh

√
α2 + β t for t ∈ (0, π2 ),

cos
√

2βλ0 − α2 − β(t− π) for t ∈ (π2 ,
3π
2 ),

A cosh
√
α2 + β(2π − t) for t ∈ ( 3π

2 , 2π),

with A = cos
√

2βλ0 − α2 − β π
2 / cosh

√
α2 + β π

2 . The curve λ0 = 1 is plotted in
red in Figure 3. Hence, according to Theorems 2.1 and/or 2.2, we have p ∈ V−(2π)
above this curve, and p 6∈ V−(2π) below this curve. For comparison, we visualize
also the approximate condition (3.3) of Corollary 3.6 for the same decomposition
(4.3), see the orange areas in Figure 3 (n = 1 on the left, n = 3 on the right).
Similarly as in Example 4.1, the blue regions in Figure 3 correspond to the best
result of [6], which is in this case provided by Theorem 11.3 therein. Again, we can
observe a considerable improvement for higher iterations.
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Figure 3. Values of α, β for which p given by (4.2) belongs to
V−(2π). Blue areas correspond to the condition given by [6, The-
orem 11.3]. Orange areas correspond to the decomposition with
p1(t) ≡ pM and the condition (3.3) of Corollary 3.6 for n = 1 (left)
and n = 3 (right). Red curve depicts the precise border λ0 = 1 of
V−(2π).
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