Special Issue in honor of John W. Neuberger. Electron. J. Diff. Eqns., Special Issue 02 (2023), pp. 193-207.

Determining the background driving process of the Ornstein-Uhlenbeck model

Maria C. Mariani, Peter K. Asante, William Kubin, Osei K. Tweneboah, Maria Beccar-Varela

Abstract:
In this work, we determine appropriate background driving processes for the 3-component superposed Ornstein-Uhlenbeck model by analyzing the fractal characteristics of the data sets using the rescaled range analysis (R/S), the detrended fluctuation analysis (DFA), and the diffusion entropy analysis (DEA).

Published March 27, 2023.
Math Subject Classifications: 34k50, 34F50, 60H10.
Key Words: Stochastic differential equation; Ito Calculus; Levy Process; Ornstein-Uhlenbeck model; Superposed Ornstein-Uhlenbeck model; Gaussian process; Background driving process (BDP); Diffusion entropy analysis (DEA); long-range correlations; detrended fluctuation analysis (DFA); rescaled range analysis (R/S).
DOI: https://doi.org/10.58997/ejde.sp.02.m1

Show me the PDF file (485 K), TEX file for this article.

Maria C. Mariani
Department of Mathematical Sciences
the University of Texas at El Paso
TX 79968, USA
email: mcmariani@utep.edu
Peter K. Asante
Computational Science Program
the University of Texas at El Paso
TX 79968, USA
email: pkasante@miners.utep.edu
William Kubin
Computational Science Program
the University of Texas at El Paso
TX 79968, USA
email: wkubin@miners.utep.edu
Osei K. Tweneboah
Department of Data Science
Ramapo College of New Jersey
505 Ramapo Valley Road
Mahwah, NJ 07430, USA
email: otwenebo@ramapo.edu
Maria Beccar-Varela
Department of Mathematical Sciences
the University of Texas at El Paso
TX 79968, USA
email: mpvarela@utep.edu

Return to the table of contents for this special issue.
Return to the EJDE web page