Maria C. Mariani, Peter K. Asante, William Kubin,
Osei K. Tweneboah, Maria Beccar-Varela
Abstract:
In this work, we determine appropriate background driving processes for the
3-component superposed Ornstein-Uhlenbeck model by analyzing the fractal
characteristics of the data sets using the rescaled range analysis (R/S),
the detrended fluctuation analysis (DFA), and the diffusion entropy analysis (DEA).
Published March 27, 2023.
Math Subject Classifications: 34k50, 34F50, 60H10.
Key Words: Stochastic differential equation; Ito Calculus; Levy Process;
Ornstein-Uhlenbeck model; Superposed Ornstein-Uhlenbeck model;
Gaussian process; Background driving process (BDP);
Diffusion entropy analysis (DEA); long-range correlations;
detrended fluctuation analysis (DFA); rescaled range analysis (R/S).
DOI: https://doi.org/10.58997/ejde.sp.02.m1
Show me the PDF file (485 K), TEX file for this article.
Maria C. Mariani Department of Mathematical Sciences the University of Texas at El Paso TX 79968, USA email: mcmariani@utep.edu | |
Peter K. Asante Computational Science Program the University of Texas at El Paso TX 79968, USA email: pkasante@miners.utep.edu | |
William Kubin Computational Science Program the University of Texas at El Paso TX 79968, USA email: wkubin@miners.utep.edu | |
Osei K. Tweneboah Department of Data Science Ramapo College of New Jersey 505 Ramapo Valley Road Mahwah, NJ 07430, USA email: otwenebo@ramapo.edu | |
Maria Beccar-Varela Department of Mathematical Sciences the University of Texas at El Paso TX 79968, USA email: mpvarela@utep.edu |
Return to the table of contents
for this special issue.
Return to the EJDE web page