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A generalization of the

Landesman-Lazer condition ∗

Petr Tomiczek

Abstract

In this paper we prove the existence of solutions to the semi-linear
problem

u′′(x) +m2u(x) + g(x, u(x)) = f(x)

u(0) = u(π) = 0

at resonance. We assume a Landesman-Lazer type condition and use a
variational method based on the Saddle Point Theorem.

1 Introduction

Let us consider the nonlinear boundary-value problem

u′′(x) +m2u(x) + g(u(x)) = f(x) , x ∈ (0, π) , (1.1)

u(0) = u(π) = 0 ,

at resonance. Here m ∈ N, f ∈ C(0, π) and g : R → R is a continuous function
such that

lim
s→∞

g(s) = g+ and lim
s→−∞

g(s) = g− (1.2)

exist and are finite numbers. Fuč́ık [3, Th.6.4] proved that (1.1) has at least one
solution provided that∫ π

0

[
g−(sinmx)

+ − g+(sinmx)
−
]
dx (1.3)

<

∫ π
0

f(x) sinmxdx <

∫ π
0

[
g+(sinmx)

+ − g−(sinmx)
−
]
dx .

Intensive study of problem (1.1) started with the paper [5] by Landesman and
Lazer in 1970. Their result [5] has been generalized in various directions. For
a survey of results and exhaustive list of the bibliography up to 1979, we refer
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the reader to Fuč́ık [3]. A list of works published since 1980, can be found in

Drábek [1]. Chun-Lei Tang [4] defined the function F (s) = 2G(s)
s
− g(s) and the

constants F+ = lim infs→+∞ F (s), F− = lim sups→−∞ F (s) to prove that for
m = 1, Problem (1.1) is solvable under the condition∫ π

0

[
F−(sinx)

+ − F+(sinx)
−
]
dx <

∫ π
0

f(x) sin xdx (1.4)

<

∫ π
0

[F+(sinx)
+ − F−(sinx)

−] dx .

In this paper, we generalize the Landesman-Lazer type conditions (1.3) and
(1.4) to prove solvability of (1.1) when the nonlinearity g that satisfies:

• g(s) is a continuous and odd function

• For s ≥ δ > 0, g(s) = ε+K sin s with K > ε > 0 (see Theorem 2).

Note that for this linearity, there is no function f satisfying conditions (1.3) or
(1.4). We will use a variational method based on the modification of the Saddle
Point Theorem introduced by Rabinowitz [7].

2 Preliminaries

It is known that the spectrum of the linear problem

u′′(x) + λu(x) = 0 , x ∈ (0, π) , (2.1)

x(0) = x(π) = 0

is the set C = {λ : λ = m2, m ∈ N}.

Notation: We shall use the classical spaces C(0, π), Lp(0, π) of continuous
and measurable real-valued functions whose p-th power of the absolute value is
Lebesgue integrable, respectively. H is the Sobolev space of absolutely continu-
ous functions u : (0, π) → R such that u′ ∈ L2(0, π) and u(0) = u(π) = 0. We
denote by the symbols ‖·‖, and ‖·‖2 the norm inH , and in L2(0, π), respectively.
Let H− be the subspace of H spanned by all eigenfunctions corresponding to
the eigenvalues 1, 4, . . . ,m2 and let H+ be the subspace of H spanned by all
eigenfunctions corresponding to the eigenvalues greater or equal to (m + 1)2.
Then H = H− ⊕H+, dim(H−) <∞ and dim(H+) =∞.
Let I : H → R be a functional such that I ∈ C1(H,R) (continuously differ-

entiable). We say that u is a critical point of I, if

I ′(u)v = 0 for all v ∈ H .

We say that I satisfies Palais-Smale condition (PS) if every sequence (un) for
which I(un) is bounded inH and I

′(un)→ 0 (as n→∞) possesses a convergent
subsequence.
Now we can formulate a variation of the Saddle Point Theorem, due to Lupo

and Micheletti [6].
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Theorem 2.1 Let I ∈ C1(H,R) and

(a) inf‖u‖→∞ I(u) = −∞ for u ∈ H
−

(b) lim‖u‖→∞ I(u) = +∞ for u ∈ H
+ and I is bounded on bounded sets in H+

(c) I satisfies Palais-Smale Condition (PS).

Then functional I has a critical point in H.

In the original Saddle Point Theorem [7], instead of a) and b) above, the
author assumes the following two conditions

(ã) There exists a bounded neighborhood D of 0 in H− and a constant α such
that I/∂D ≤ α,

(b̃) There is a constant β > α such that I/H+ ≥ β.

It is obvious, that conditions (ã), (b̃) follow from conditions (a), (b).
We investigate the boundary-value problem

u′′(x) +m2u(x) + g(x, u(x)) = f(x) , x ∈ (0, π) , (2.2)

u(0) = u(π) = 0,

where f ∈ L1(0, π),m ∈ N and g : (0, π)×R→ R is Caratheodory type function,
i.e. g(·, s) is measurable for all s ∈ R and g(x, ·) is continuous for a.e. x ∈ (0, π).
By a solution of (2.2) we mean a function u ∈ C1(0, π) such that u′ is

absolutely continuous, u satisfies the boundary conditions and the equations
(2.2) holds a.e. in (0, π).
We study (2.2) by using of varitional methods. More precisely, we look for

critical points of the functional J : H → R, which is defined by

J(u) =
1

2

∫ π
0

[
(u′)2 −m2u2

]
dx−

∫ π
0

[
G(x, u)− fu

]
dx , (2.3)

where

G(x, s) =

∫ s
0

g(x, t) dt .

Every critical point u ∈ H of the functional J satisfies∫ π
0

[
u′v′ −m2uv

]
dx−

∫ π
0

[
g(x, u)v − fv

]
dx = 0 for all v ∈ H .

Then u is also a weak solution of (2.2) and vice versa. The usual regularity
argument for ODE yields immediately (see Fuč́ık [3]) that any weak solution of
(2.2) is also the solution in the sense mentioned above.
We will suppose that g satisfies the growth restriction

|g(x, s)| ≤ c|s|+ p(x) for a.e. x ∈ (0, π) and for all s ∈ R , (2.4)
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with p ∈ L1(0, π) and c > 0. Moreover,

lim
|s|→∞

g(x, s)

s
= 0 uniformly for a.e. x ∈ (0, π) . (2.5)

We define

G+(x) = lim inf
s→+∞

G(x, s)

s
, G−(x) = lim sup

s→−∞

G(x, s)

s
.

Assume that the following potential Landesman-Lazer type condition holds:∫ π
0

[
G−(x)(sinmx)

+ −G+(x)(sinmx)
−
]
dx (2.6)

<

∫ π
0

f(x) sinmxdx <

∫ π
0

[
G+(x)(sinmx)

+ −G−(x)(sinmx)
−
]
dx .

Set

F (x, s) =

{
2G(x, s)

s
− g(x, s) s 6= 0 ,

g(x, 0) s = 0 ,

g+(x) = lim inf
s→+∞

g(x, s) , g−(x) = lim sup
s→−∞

g(x, s),

F+(x) = lim inf
s→+∞

F (x, s) , F−(x) = lim sup
s→−∞

F (x, s) .

We generalize conditions (1.3) and (1.4) by assuming that f and g satisfy one
of the following set of inequalities: Either∫ π

0

[
g−(x)(sinmx)

+ − g+(x)(sinmx)
−
]
dx (2.7)

<

∫ π
0

f(x) sinmxdx <

∫ π
0

[
g+(x)(sinmx)

+ − g−(x)(sinmx)
−
]
dx ,

or ∫ π
0

[
F−(x)(sinmx)

+ − F+(x)(sinmx)
−
]
dx (2.8)

<

∫ π
0

f(x) sinmxdx <

∫ π
0

[
F+(x)(sinmx)

+ − F−(x)(sinmx)
−
]
dx .

We shall prove that for any g,

g+(x) ≤ G+(x) , F+(x) ≤ G+(x) , G−(x) ≤ g−(x) , G−(x) ≤ F−(x) .
(2.9)

Therefore, the potential Landesman-Lazer type condition (2.6) is more general
than the conditions (2.7) and (2.8).

Let us prove the first two inequalities in (2.9). The proof of the other two is
similar. It follows from the definition of the function g+(x) that ∀ε > 0, ∃R > 0
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such that ∀s > R, g(x, s) ≥ g+(x) − ε for x ∈ (0, π). Then for s > R and
x ∈ (0, π) we have

G(x, s)

s
≥
1

s

∫ R
0

g(x, t) dt+ (g+(x)− ε)
s−R

s
.

Hence, the inequality g+(x) ≤ G+(x) follows.
We use the argument from C.-L. Tang [4] and prove that F+(x) ≤ G+(x).

It follows from (2.8) that F+(x) > −∞ for a.e. x ∈ (0, π). For these x and
arbitrary ε > 0, we set

Fε(x) =

{
F+(x)− ε if F+(x) ∈ R ,

1/ε if F+(x) =∞ .

Then for any ε > 0 there exists K(x) > 0 such that

F (x, s) ≥ Fε(x) for all s ≥ K(x) .

Since

∂

∂τ

(
−
G(x, τ)

τ2

)
= −
g(x, τ) · τ2 − 2G(x, τ) · τ

τ4
=
F (x, τ)

τ2
≥
Fε(x)

τ2

for any s > t > K(x), we have∫ s
t

∂

∂τ

(
−
G(x, τ)

τ2

)
dτ ≥

∫ s
t

Fε(x)

τ2
dτ ;

i.e.
G(x, t)

t2
−
G(x, s)

s2
≥ Fε(x)

(
t−1 − s−1

)
.

Assumption (2.5) implies that G(x, s)/s2 → 0. Since ε > 0 was arbitrary,
passing to the limit as s → +∞ in the last inequality, we obtain G(x, t)/t2 ≥
Fε(x)/t and so G+(x) ≥ F+(x).

Example. We suppose that the nonlinearities gi(x, s) = gi(s) (i = 1, 2, 3, 4)
are continuous, odd and for all s ≥ ε > 0: g1(s) = 1, g2(s) = | sin s|, g3(s) =
4
π
− | sin s|, g4(s) = 1 + sin s. We set

M6 = {f ∈ L1(0, π) such that f satisfies (2.6)},

M7 = {f ∈ L1(0, π) such that f satisfies (2.7)},

M8 = {f ∈ L1(0, π) such that f satisfies (2.8)}.

Then for g1, one has M6 =M7 =M8 6= ∅, g+ = F+ = G+ = 1;
for g2, one has M7 = ∅, ∅ 6=M8 ⊂⊂M6, g+ = 0 < F+ =

4
π
− 1 < G+ =

2
π
;

for g3, one has M8 = ∅, ∅ 6=M7 ⊂⊂M6, F+ = 0 < g+ =
4
π − 1 < G+ =

2
π ;

for g4, one has M7 =M8 = ∅, ∅ 6=M6, g+ = F+ = 0 < G+ = 1.
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3 Main result

Theorem 3.1 Under the assumptions (2.4), (2.5), and (2.6), Problem (2.2)
has at least one solution in H.

Proof Firstly, we note that by (2.5),

lim
‖u‖→∞

∫ π
0

G(x, u)− fu

‖u‖2
dx = 0 . (3.1)

We shall prove that the functional J defined by (2.3) satisfies the assumptions
in Theorem 2.1 (Saddle Point Theorem).
For Assumption (a), we argue by contradiction. Suppose that

inf
‖u‖→∞

J(u) = −∞ for u ∈ H−

is not true. Then there is a sequence (un) ⊂ H− such that ‖un‖ → ∞ and a
constant c− satisfying

lim inf
n→∞

J(un) ≥ c−. (3.2)

From the definition of J and from (3.2) it follows that

lim inf
n→∞

[
1

2

∫ π
0

(u′n)
2 −m2u2n
‖un‖

2 dx −

∫ π
0

G(x, un)− fun

‖un‖
2 dx

]
≥ 0. (3.3)

For u ∈ H− we have∫ π
0

[(u′)2 −m2u2] dx = ‖u‖2 −m2‖u‖22 ≤ 0 (3.4)

and the equality in (3.4) holds only for u = k sinmx, k ∈ R. Set vn = un/‖un‖.
Since dimH− < ∞ there is v0 ∈ H− such that vn → v0 strongly in H− (also
strongly in L2(0, π)). Then (3.1), (3.3), and (3.4) yield

v0 = k sinmx ,

where k = 1
m

√
2
π
or k = − 1

m

√
2
π
, (‖v0‖ = 1). Let k =

1
m

√
2
π
. We divide (3.2)

by ‖un‖ to obtain

lim inf
n→∞

[
1

2

∫ π
0

(u′n)
2 −m2u2n
‖un‖

dx−

∫ π
0

G(x, un)− fun
‖un‖

dx

]
≥ 0 . (3.5)

Because un ∈ H− the first integral in (3.5) is less than or equal to zero and we
have

lim inf
n→∞

[∫ π
0

−
G(x, un)

un
vn dx

]
+ k

∫ π
0

f sinmxdx ≥ 0 . (3.6)
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We know that vn → k sinmx, k > 0 in H−. Because of the compact imbedding
H− ⊂ C(0, π), we have vn → k sinmx in C(0, π) and we get

lim
n→∞

un(x) =

{
+∞ for x ∈ (0, π) such that sinmx > 0 ,
−∞ for x ∈ (0, π) such that sinmx < 0 .

We note that from (2.6) it follows that there exist constants R, r and functions
A+(x), A−(x) ∈ L1(0, π) such that A+(x) ≤ G+(x), G−(x) ≤ A−(x) for a.e.
x ∈ (0, π) and for all s ≥ R, s ≤ r, respectively. We obtain from Fatou’s lemma
and (3.6)∫ π

0

f(x) sinmxdx ≥

∫ π
0

[
G+(x)(sinmx)

+ −G−(x)(sinmx)
−
]
dx , (3.7)

a contradiction to (2.6). We proceed for the case k = − 1
m

√
2
π
. Then Assump-

tion a) of Theorem 1 is verified.

For Assumption (b), we prove that

lim
‖u‖→∞

J(u) =∞ for all u ∈ H+

and that J is bounded on bounded sets. Because of the compact imbedding of
H into C(0, π) (‖u‖C(0,π) ≤ c1‖u‖), and of H into L

2(0, π) (‖u‖2 ≤ c2‖u‖), and
the assumption (2.4) one has

∫ π
0

[
G(x, u(x)) − f(x)u(x)

]
dx ≤

∫ π
0

[
c
u2(x)

2
+ p(x)|u(x)| − f(x)u(x)

]
dx

≤ c2
c

2
‖u‖2 + (‖p‖1 + ‖f‖1)c1‖u‖ . (3.8)

Hence J is bounded on bounded subsets of H.
Since u ∈ H+, we have

‖u‖2 ≥ (m+ 1)2‖u‖22 . (3.9)

The definition of J , (3.1), and (3.9) yield

lim
‖u‖→∞

J(u)

‖u‖2
≥ lim
‖u‖→∞

1

2
(2m+ 1)

‖u‖22
‖u‖2

. (3.10)

If ‖u‖22/‖u‖
2 → 0 then it follows from the definition of J and (3.1) that

lim
‖u‖→∞

J(u)

‖u‖2
=
1

2
. (3.11)

Then (3.10) and (3.11) imply lim‖u‖→∞ J(u) =∞; therefore, Assumption b) of
Theorem 1 is satisfied.
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For Assumption (c), we show that J satisfies the Palais-Smale condition.
First, we suppose that the sequence (un) is unbounded and there exists a con-
stant c3 such that∣∣∣1

2

∫ π
0

[
(u′n)

2 −m2u2n
]
dx−

∫ π
0

[
G(x, un)− fun

]
dx
∣∣∣ ≤ c3 (3.12)

and
lim
n→∞

‖J ′(un)‖ = 0 . (3.13)

Let (wk) be an arbitrary sequence bounded in H . It follows from (3.13) and the
Schwarz inequality that

∣∣ lim
n→∞
k→∞

∫ π
0

[u′nw
′
k −m

2unwk] dx−

∫ π
0

[g(x, un)wk − fwk] dx
∣∣

= | lim
n→∞
k→∞

J ′(un)wk| (3.14)

≤ lim
n→∞
k→∞

‖J ′(un)‖ · ‖wk‖ = 0 .

By (2.4) and (2.5) we obtain

lim
n→∞
k→∞

∫ π
0

[g(x, un)
‖un‖

wk −
f

‖un‖
wk

]
dx = 0 . (3.15)

Put vn = un/‖un‖. Due to compact imbedding H ⊂ L2(0, π) there is v0 ∈ H
such that (up to subsequence) vn ⇀ v0 weakly in H, vn → v0 strongly in
L2(0, π). One has from (3.14), (3.15)

lim
n→∞
k→∞

∫ π
0

[ u′n
‖un‖

w′k −m
2 un

‖un‖
wk

]
dx = 0 (3.16)

and also

lim
n→∞
m→∞
k→∞

∫ π
0

[
(vn − vm)

′w′k −m
2(vn − vm)wk

]
dx = 0 . (3.17)

We set k = n and wk = vn, k = m and wk = vm in (3.17) and subtract these
equalities we get

lim
n→∞
m→∞

[
‖vn − vm‖

2 −m2‖vn − vm‖
2
2

]
= 0 . (3.18)

Since vn → v0 strongly in L2(0, π) then ‖vn−vm‖2 → 0. Since (3.18) holds then
vn is a Cauchy sequence in H and vn → v0 strongly in H . Hence it follows from
(3.16) and from the usual regularity argument for ordinary differential equations

(see Fuč́ık [3]) that either v0 =
1
m

√
2
π
sinmx or v0 = −

1
m

√
2
π
sinmx (‖v0‖ = 1).

Suppose that v0 =
1
m

√
2
π
sinmx. Setting wk = sinmx in (3.14), we get

lim
n→∞

∫ π
0

[
−g(x, un(x)) sinmx+ f(x) sinmx

]
dx = 0 . (3.19)
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Let H be the subspace of H spanned by the eigenfunctions sinx, sin 2x, . . . ,
sin(m− 1)x. Then we write vn = vn + an sinmx+ ṽn, where vn ∈ H , ṽn ∈ H+

and an ∈ R (likewise un = un + ‖un‖an sinmx + ũn). If we set k = n and
wk = −vn + an sinmx+ ṽn in (3.14), we get

lim
n→∞

{∫ π
0

[
u′n(−vn + an sinmx+ ṽn)

′ −m2un(−vn + an sinmx+ ṽn)
]
dx

−

∫ π
0

[
g(x, un)(−vn + an sinmx+ ṽn)− f(−vn + an sinmx+ ṽn)

]
dx
}

= 0 . (3.20)

It follows from (3.19) and (3.20) that

lim
n→∞

1

‖un‖

{∫ π
0

[
−u′nu

′
n +m

2unun + u
′
nũ
′
n −m

2unũn
]
dx (3.21)

−

∫ π
0

[g(x, un)
un

un(−un + ũn)− f(−un + ũn)
]
dx
}
= 0 .

For un ∈ H we have ‖un‖2 ≤ (m − 1)2‖un‖22, and for ũn ∈ H
+ we have

‖ũn‖2 ≥ (m+ 1)2‖ũn‖22. It follows from the orthogonality
∫ π
0 u

′
nũ
′
n dx = 0 that

the first integral in (3.21) satisfies

∫ π
0

[
−u′nu

′
n +m

2unun + u
′
nũ
′
n −m

2unũn
]
dx

= −‖un‖
2 +m2‖un‖

2
2 + ‖ũn‖

2 −m2‖ũn‖
2
2 (3.22)

≥ −‖un‖
2 +

m2

(m− 1)2
‖un‖

2 + ‖ũn‖
2 −

m2

(m+ 1)2
‖ũn‖

2

=
2m− 1

(m− 1)2
‖un‖

2 +
2m+ 1

(m+ 1)2
‖ũn‖

2 .

It follows from (2.5) and (2.4) that ∀ε > 0, ∃R > 0 such that for a.e. x ∈ (0, π)
and all |s| > R, ∣∣∣∣g(x, s)s

∣∣∣∣ < ε .
Also for a.e. x ∈ (0, π), and all |s| ≤ R,

|g(x, s)| ≤ cR+ p(x) .

It follows from the imbedding H ⊂ L2(0, π) (‖u‖2 ≤ ‖u‖) that the second
integral in the equations (3.21) satisfies

∫ π
0

[g(x, un)
un

un(−un + ũn)− f(−un + ũn)
]
dx (3.23)

≤ ε(‖un‖
2 + ‖ũn‖

2) + (cR+ ‖p‖1 + ‖f‖1)(‖u‖C(0,π) + ‖ũ‖C(0,π)) .
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It follows from (3.21), (3.22), (3.23), and the imbeddingH ⊂ C(0, π) (‖u‖C(0,π) ≤
c1‖u‖) that there are constants %1 > 0, %2 > 0 such that

0 ≥ lim
n→∞

1

‖un‖

[
%1‖un‖

2 + %2‖ũn‖
2 − (cR+ ‖p‖1 + ‖f‖1)c1(‖un‖+ ‖ũn‖)

]
.

Let u⊥n = un + ũn. Then it holds ‖u
⊥
n ‖
2 = ‖un‖2 + ‖ũn‖2 and ‖un‖ + ‖ũn‖ ≤√

2‖u⊥n ‖ . Since there are constants % > 0 and β > 0 such that

0 ≥ lim
n→∞

1

‖un‖

(
%‖u⊥n ‖

2 − β‖u⊥n ‖
)
.

Therefore,

0 = lim
n→∞

‖u⊥n ‖
2

‖un‖
. (3.24)

Now we divide (3.12) by ‖un‖. We get

lim
n→∞

{
1

2

∫ π
0

[ u′n
‖un‖

u′n −m
2 un

‖un‖
un

]
dx−

∫ π
0

G(un)− fun
‖un‖

dx

}
= 0 . (3.25)

We obtain from (3.24) the following equality

lim
n→∞

1

2

∫ π
0

[ u′n
‖un‖

u′n −m
2 un

‖un‖
un

]
dx (3.26)

= lim
n→∞

1

2

∫ π
0

[ ((u⊥n )′)2
‖un‖

−m2
(u⊥n )

2

‖un‖

]
dx = 0 .

We know that vn → k sinmx, k > 0 in H . Due to compact imbedding H ⊂
C(0, π) we have vn → k sinmx in C(0, π) and we get

lim
n→∞

un(x) =

{
+∞ for x ∈ (0, π) such that sinmx > 0 ,

−∞ for x ∈ (0, π) such that sinmx < 0 .

Using Fatou’s lemma, (3.25), and (3.26) we conclude∫ π
0

f(x) sinmxdx ≥

∫ π
0

[
G+(x)(sinmx)

+ −G−(x)(sinmx)
−
]
dx . (3.27)

This is a contradiction to (2.6). This implies that the sequence {‖un‖} is
bounded. Then there exists u0 ∈ H such that ‖un‖ ⇀ u0 in H , ‖un‖ → u0 in
L2(0, π), C(0, π) (taking a subsequence if it is necessary). It follows from the
equality (3.14) that

lim
n→∞
m→∞
k→∞

{∫ π
0

[
(un − um)

′w′k −m
2(un − um)wk

]
dx (3.28)

−

∫ π
0

[
g(x, un)− g(x, um)

]
wk dx

}
= 0 .
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The strong convergence un → u0 in C(0, π) and the assumption (2.4) imply

lim
n→∞
m→∞

∫ π
0

[
g(x, un)− g(x, um)

](
un − um

)
dx = 0 . (3.29)

If we set wk = un, wk = um in (3.29) and subtract these equalities, then

lim
n→∞
m→∞

∫ π
0

[(u′n − u
′
m)
2 −m2(un − um)

2] dx = 0 . (3.30)

Hence the strong convergence un → u0 in L2(0, π) and (3.30) imply the strong
convergence un → u0 in H . This shows that J satisfies Palais-Smale condition
and the proof of Theorem 2 is complete.
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