M'hamed Kassi
Abstract:
Let
be a
-dimensional
complete Riemannian manifold with a
pole, and
a Riemannian manifold. Let
be a strictly increasing
function such that
and
.
We show that if
, then every
-harmonic
map
with finite
-energy
(i.e a local extremal of
and
is finite) is a constant map provided that the radial curvature of
satisfies a pinching condition depending to
.
Submitted March 24, 2005. Published January 31, 2006.
Math Subject Classifications: 58E20, 53C21, 58J05.
Key Words: F-harmonic maps; Liouville propriety; Stokes formula;
comparison theorem.
Show me the PDF file (212K), TEX file, and other files for this article.
![]() |
M'hamed Kassi Equipe d'Analyse Complexe, Laboratoire d'Analyse Fonctionnelle Harmonique et Complexe Département de Mathématiques, Faculté des Sciences Université Ibn Tofail, Kénitra, Maroc email: mhamedkassi@yahoo.fr |
---|
Return to the EJDE web page