Electron. J. Diff. Eqns., Vol. 2007(2007), No. 73, pp. 1-8.

Existence of positive solutions for nonlinear dynamic systems with a parameter on a measure chain

Shuang-Hong Ma, Jian-Ping Sun, Da-Bin Wang

Abstract:
In this paper, we consider the following dynamic system with parameter on a measure chain $\mathbb{T}$,
$$\displaylines{
 u^{\Delta\Delta}_{i}(t)+\lambda h_{i}(t)f_{i}(u_{1}(\sigma(t)),
 u_{2}(\sigma(t)),\dots ,u_{n}(\sigma(t)))=0,\quad
 t\in[a,b], \cr
 \alpha u_{i}(a)-\beta u^{\Delta}_{i}(a)=0,\quad
 \gamma u_{i}(\sigma(b))+\delta u^{\Delta}_{i}(\sigma(b))=0,
 }$$
where $i=1,2,\dots ,n$. Using fixed-point index theory, we find sufficient conditions the existence of positive solutions.

Submitted January 9, 2007. Published May 15, 2007.
Math Subject Classifications: 34B15, 39A10.
Key Words: Dynamic system; positive solution; cone; fixed point; measure chain.

Show me the PDF file (212K), TEX file, and other files for this article.

  Shuang-Hong Ma
Department of Applied Mathematics
Lanzhou University of Technology
Lanzhou, Gansu, 730050, China
email: mashuanghong@lut.cn
Jian-Ping Sun
Department of Applied Mathematics
Lanzhou University of Technology
Lanzhou, Gansu, 730050, China
email: jpsun@lut.cn
Da-Bin Wang
Department of Applied Mathematics
Lanzhou University of Technology
Lanzhou, Gansu, 730050, China
email: wangdb@lut.cn

Return to the EJDE web page