Electron. J. Diff. Eqns., Vol. 2009(2009), No. 88, pp. 1-7.

A class of generalized integral operators

Samir Bekkara, Bekkai Messirdi, Abderrahmane Senoussaoui

Abstract:
In this paper, we introduce a class of generalized integral operators that includes Fourier integral operators. We establish some conditions on these operators such that they do not have bounded extension on $L^{2}(\mathbb{R}^{n})$. This permit us in particular to construct a class of Fourier integral operators with bounded symbols in $S_{1,1}^{0}(\mathbb{R}^{n}\times \mathbb{R}^{n})$ and in $\bigcap_{0<\rho <1}S_{\rho ,1}^{0}
 (\mathbb{R}^{n}\times \mathbb{R}^{n})$ which cannot be extended to bounded operators in $L^{2}(\mathbb{R}^{n})$.

Submitted February 12, 2009. Published July 27, 2009.
Math Subject Classifications: 35S30, 35S05, 47A10, 35P05.
Key Words: Integral operators; L2-boundedness; unbounded Fourier integral operators.

Show me the PDF file (225 KB), TEX file, and other files for this article.

Samir Bekkara
Université des Sciences et de la Technologie d'Oran
Faculté des Sciences, Département de Mathématiques, Oran, Algeria
email: sbekkara@yahoo.fr
Bekkai Messirdi, Abderrahmane Senoussaoui
Université d'Oran Es-Sénia, Faculté des Sciences
Département de Mathématiques. B.P. 1524 El-Mnaouer, Oran, Algeria
email: bmessirdi@univ-oran.dz
Abderrahmane Senoussaoui
Université d'Oran Es-Sénia, Faculté des Sciences
Département de Mathématiques. B.P. 1524 El-Mnaouer, Oran, Algeria
email: senoussaoui.abdou@univ-oran.dz

Return to the EJDE web page