Gastao A. Braga, Paulo C. Carriao, Antonio A. G. Ruas
Abstract:
In this article, we study a boundary-initial value problem on the half-line
for the diffusion equation with a Fujita type diffusion coefficient
that carries a parameter
.
The equation models
the flow of water in soil within an approximation where gravitational
effects are not taken into account and, when
,
an explicit
self-similar solution
can be found.
We prove that if
then the above problem, with
uniform boundary conditions, posses self-similar solutions.
This is the first step towards a multiscale (renormalization group)
asymptotic analysis of solutions to more general equations than the ones
studied here.
Submitted October 11, 2011. Published June 21, 2012.
Math Subject Classifications: 34E10, 34E13, 35C06, 35Q86.
Key Words: Water infiltration; nonlinear diffusion; self-similar solutions;
Fujita diffusion coefficient.
Show me the PDF file (236 KB), TEX file, and other files for this article.
Gastão A. Braga Departamento de Matemática - UFMG, Caixa Postal 1621 30161-970 Belo Horizonte, MG, Brazil email: gbraga@mat.ufmg.br | |
Paulo C. Carrião Departamento de Matemática - UFMG, Caixa Postal 1621 30161-970 Belo Horizonte, MG, Brazil email: carrion@mat.ufmg.br | |
Antonio A. G. Ruas Departamento de Matemática - UFMG, Caixa Postal 1621 30161-970 Belo Horizonte, MG, Brazil email: gaspar@mat.ufmg.br |
Return to the EJDE web page