Electron. J. Differential Equations, Vol. 2017 (2017), No. 251, pp. 1-10.

Existence of solutions to superlinear p-Laplace equations without Ambrosetti-Rabinowizt condition

Duong Minh Duc

We study the existence of non-trivial weak solutions in $W^{1,p}_{0}(\Omega)$ of the super-linear Dirichlet problem
 - \hbox{div}(|\nabla u|^{p-2}\nabla u)=f(x,u) \quad \text{in }\Omega,\cr
 u=0 \quad \text{on }\partial\Omega,
where f satisfies the condition
 |f(x,t)|\leq |\omega(x)t|^{r-1} + b(x)\quad \forall (x,t) \in
 \Omega\times \mathbb{R},
where $r\in (p,\frac{Np}{N-p})$, $b\in L^{\frac{r}{r-1}}(\Omega)$ and $|\omega|^{r-1}$ may be non-integrable on $\Omega$.

Submitted May 8, 2017. Published October 10, 2017.
Math Subject Classifications: 46E35, 35J20.
Key Words: Nemytskii operators; p-Laplacian; multiplicity of solutions; mountain-pass theorem.

Show me the PDF file (247 KB), TEX file for this article.

Duong Minh Duc
University of Sciences
Vietnam National University
227 Nguyen Van Cu Q5
Hochiminh City, Vietnam
email: dmduc@hcmus.edu.vn

Return to the EJDE web page