Xiyou Cheng, Zhaosheng Feng
Abstract:
This article studies the existence and multiplicity of component-wise
positive solutions for systems of nonlinear Hammerstein integral equations.
In this system one nonlinear term is uniformly superlinear
or uniformly sublinear, and the other is locally uniformly superlinear
or locally uniformly sublinear.
Discussions are undertaken by means of the fixed point index theory in cones.
As applications, we show the existence and multiplicity of component-wise
positive solutions for systems of second-order ordinary differential equations
with the Dirichlet boundary value conditions and mixed boundary value conditions,
respectively.
Submitted March 12, 2018. Published April 19, 2019.
Math Subject Classifications: 45G15, 37C25, 45N05.
Key Words: Hammerstein integral equation; positive solution;
fixed point index; product cone; Dirichlet boundary condition.
Show me the PDF file (334 KB), TEX file for this article.
Xiyou Cheng School of Mathematics and Statistics Lanzhou University Lanzhou, Gansu 730000, China email: chengxy@lzu.edu.cn | |
Zhaosheng Feng Department of Mathematics University of Texas Rio Grande Valley Edinburg, TX 78539, USA email: zhaosheng.feng@utrgv.edu |
Return to the EJDE web page