Paulo Cesar Carriao, Raquel Lehrer, Olimpio Hiroshi Miyagaki, Andre Vicente
Abstract:
We consider a Brezis-Nirenberg problem on the hyperbolic space
.
By using the stereographic projection, the problem becomes a singular
problem on the boundary of the open ball
.
Thanks to the Hardy inequality, in a version due to Brezis-Marcus,
the difficulty involving singularities can be overcame.
We use the mountain pass theorem due to Ambrosetti-Rabinowitz and
Brezis-Nirenberg arguments to obtain a nontrivial solution.
Submitted June 30, 2018. Published May 13, 2019.
Math Subject Classifications: 32Q45, 35A15, 35B38, 35B33.
Key Words: Variational method; critical point; critical exponent; hyperbolic manifold.
Show me the PDF file (369 KB), TEX file for this article.
Paulo César Carrião Universidade Federal de Minas Gerais - ICEX - DM, CEP: 31270-901 Belo Horizonte, MG, Brazil email: pauloceca@gmail.com | |
Raquel Lehrer Universidade Estadual do Oeste do Paraná - CCET Rua Universitária, 2069 Jd. Universitário, CEP: 85819-110 Cascavel, PR, Brazil email: rlehrer@gmail.com | |
Olíimpio Hiroshi Miyagaki Universidade Federal de Juiz de Fora - DM CEP: 36036-330 Juiz de Fora, MG, Brazil email: ohmiyagaki@gmail.com | |
André Vicente Universidade Estadual do Oeste do Paraná - CCET Rua Universitária, 2069 Jd. Universitário CEP: 85819-110 Cascavel, PR, Brazil email: andre.vicente@unioeste.br |
Return to the EJDE web page