Electron. J. Differential Equations, Vol. 2020 (2020), No. 114, pp. 1-17.

Asymptotic behavior of positive radial solutions to elliptic equations approaching critical growth

Rosa Pardo, Arturo Sanjuan

We study the asymptotic behavior of radially symmetric solutions to the subcritical semilinear elliptic problem

as $\alpha\to 0^+$. Using asymptotic estimates, we prove that there exists an explicitly defined constant L(N,R)>0, only depending on N and R, such that

Submitted November 11, 2019. Published November 18, 2020.
Math Subject Classifications: 35B33, 35B45, 35B09, 35J60.
Key Words: A priori bounds; positive solutions; semilinear elliptic equations; Dirichlet boundary conditions; growth estimates; subcritical nonlinearites.

Show me the PDF file (391 KB), TEX file for this article.

Rosa Pardo
Universidad Complutense de Madrid
28040 Madrid, Spain
email: rpardo@ucm.es
Arturo Sanjuán
Universidad Distrital Francisco José de Caldas
Bogotá, Colombia
email: aasanjuanc@udistrital.edu.co

Return to the EJDE web page