Electron. J. Differential Equations, Vol. 2020 (2020), No. 15, pp. 1-16.

Existence of solutions to nonlocal boundary value problems for fractional differential equations with impulses

Daniel Cao Labora, Rosana Rodriguez-Lopez, Mohammed Belmekki

Abstract:
In this work, through the application of fixed point theory, we consider the properties of the solutions to a nonlocal boundary value problem for fractional differential equations subject to impulses at fixed times. We compute the Green's function related to the problem, which allows us to obtain an integral representation of the solution. This representation gives an explicit description of the solution when the source term does not depend on the solution. Nevertheless, when the description of the source term is implicit, we can not ensure the existence of a solution. In this case, we prove the existence of a solution for the integral problem via fixed point techniques. To do this, we develop a slight generalization of Arzela-Ascoli theorem that makes it suitable for piecewise uniformly continuous functions.

Submitted May 9, 2018. Published February 10, 2020.
Math Subject Classifications: 26A33, 34B37, 34B05, 34B10, 34B27.
Key Words: Fractional differential equations; nonlocal boundary value problems; Riemann-Liouville fractional derivative; fixed point results.
DOI: 10.58997/ejde.2020.15

Show me the PDF file (326 KB), TEX file for this article.

Daniel Cao Labora
Departamento de Estadística, Análisis Matemático y Optimización
Universidade de Santiago de Compostela, 15782, Spain
email: daniel.cao@usc.es
Rosana Rodríguez-López
Departamento de Estadística, Análisis Matemático y Optimización
Universidade de Santiago de Compostela, 15782, Spain
email: rosana.rodriguez.lopez@usc.es
Mohammed Belmekki
Ecole Supérieure en Sciences Appliquées
BP. 165 RP, Bel Horizon
Tlemcen,13000, Algeria
email: m.belmekki@yahoo.fr

Return to the EJDE web page