Electron. J. Differential Equations, Vol. 2020 (2020), No. 65, pp. 1-27.

Convergence of delay equations driven by a Holder continuous function of order 1/3<β<1/2

Mireia Besalu, Giulia Binotto, Carles Rovira

Abstract:
In this article we show that, when the delay approaches zero, the solution of multidimensional delay differential equations driven by a Holder continuous function of order 1/3<β<1/2 converges with the supremum norm to the solution for the equation without delay. Finally we discuss the applications to stochastic differential equations

Submitted October 30, 2018. Published June 26, 2020.
Math Subject Classifications: 60H05, 60H07.
Key Words: Delay equation; stochastic differential equation; convergence; fractional integral.
DOI: 10.58997/ejde.2020.65

Show me the PDF file (410 KB), TEX file for this article.

Mireia Besalú
Departament de Genética, Microbiologia i Estadística
Universitat de Barcelona
Barcelona, Spain
email: mbesalu@ub.edu
Giulia Binotto
Departament de Matemàtiques
Universitat Autònoma de Barcelona
Barcelona, Spain
email: gbinotto@mat.uab.cat
Carles Rovira
Departament de Matemàtiques i Informàtica
Universitat de Barcelona, Barcelona, Spain
email: carles.rovira@ub.edu

Return to the EJDE web page