Paulo Cesar Carriao, Augusto Cesar dos Reis Costa, Olimpio Hiroshi Miyagaki, Andre Vicente
Abstract:
In this work we study a class of the critical Kirchhoff-type problems in a Hyperbolic space.
Because of the Kirchhoff term, the nonlinearity uq becomes concave for 2<q<4,
This brings difficulties when proving the boundedness of Palais Smale sequences.
We overcome this difficulty by using a scaled functional related with a Pohozaev manifold.
In addition, we need to overcome singularities on the unit sphere, so that we use
variational methods to obtain our results.
Submitted January 30, 2021. Published June 14, 2021.
Math Subject Classifications: 58J05, 35R01, 35J60, 35B33.
Key Words: Kirchhoff-type problem; variational methods; hyperbolic space.
DOI: https://doi.org/10.58997/ejde.2021.53
Show me the PDF file (364 KB), TEX file for this article.
Paulo Cesar Carrião Departamento de Matemática Universidade Federal de Minas Gerais Belo Horizonte, MG 31270-901, Brazil email: pauloceca@gmail.com | |
Augusto César dos Reis Costa Faculdade de Matemática Instituto de Ciências Exatas e Naturais Universidade Federal do Pará Belém, PA 66075-110, Brazil email: aug@ufpa.br | |
Olimpio Hiroshi Miyagaki Departamento de Matemática Universidade Federal de Juiz de Fora Juiz de Fora, MG 36036-330, Brazil email: ohmiyagaki@gmail.com | |
André Vicente Centro de Ciências Exatas e Tecnolóogicas Universidade Estadual do Oeste do Paraná, Cascavel, PR 85819-110, Brazil email: andre.vicente@unioeste.br |
Return to the EJDE web page