Electron. J. Differential Equations, Vol. 2023 (2023), No. 10, pp. 1-19.

Multiplicity results of nonlocal singular PDEs with critical Sobolev-Hardy exponent

Adel Daoues, Amani Hammami, Kamel Saoudi

Abstract:
In this article we study a nonlocal equation involving singular and critical Hardy-Sobolev non-linearities, \[ \displaylines{ (-\Delta_p)^su-\mu \frac{|u|^{p-2}u}{|x|^{sp}} =\lambda u^{-\alpha}+\frac{|u|^{p_s^*(t)-2}u}{|x|^t}, \quad\text{in }\Omega,\\ u>0,\quad\text{in }\Omega,\\ u=0,\quad\text{in }\mathbb{R}^N\setminus\Omega, }\] where \(\Omega \subset \mathbb{R}^N\) is a bounded domain with Lipschitz boundary and \( (-\Delta_p)^s\) is the fractional p-Laplacian operator. We combine some variational techniques with a perturbation method to show the existence of multiple solutions.

Submitted November 22, 2022. Published January 26, 2023.
Math Subject Classifications: 35R11, 35J75, 35J60, 46E35.
Key Words: Nonlocal elliptic problem; singular non-linearity; variational method; Sobolev and Hardy non-linearities; perturbation method; multiple positive solutions.
DOI: https://doi.org/10.58997/ejde.2023.10

Show me the PDF file (400 KB), TEX file for this article.

Adel Daoues
École Supérieure des Sciences et de Technologie de Hammam Sousse
Sousse, Tunisia
email: adel.daouas@essths.u-sousse.tn
Amani Hammami
École Supérieure des Sciences et de Technologie de Hammam Sousse
Sousse, Tunisia
email: amanihammami29@gmail.com
Kamel Saoudi
Basic and Applied Scientific Research Center
Imam Abdulrahman Bin Faisal University, Saudi Arabia
email: kmsaoudi@iau.edu.sa

Return to the EJDE web page