Electron. J. Differential Equations, Vol. 2023 (2023), No. 50, pp. 1-13.

Evolution equations on time-dependent Lebesgue spaces with variable exponents

Jacson Simsen

Abstract:
We extend the results in Kloeden-Simsen [CPAA 2014] to \(p(x,t)\)-Laplacian problems on time-dependent Lebesgue spaces with variable exponents. We study the equation $$\displaylines{ \frac{\partial u_\lambda}{\partial t}(t)-\operatorname{div}\big(D_\lambda(t,x)|\nabla u_\lambda(t)|^{p(x,t)-2}\nabla u_\lambda(t)\big) +|u_\lambda(t)|^{p(x,t)-2}u_\lambda(t) =B(t,u_\lambda(t)) }$$ on a bounded smooth domain \(\Omega\) in \(\mathbb{R}^n\), \(n\geq 1\), with a homogeneous Neumann boundary condition, where the exponent \(p(\cdot)\in C(\bar{\Omega}\times [\tau,T],\mathbb{R}^+)\) satisfies \(\min p(x,t)>2\), and \(\lambda\in [0,\infty)\) is a parameter.

Submitted February 18, 2023. Published July 24, 2023.
Math Subject Classifications: 35K55, 35K92, 35A16, 35B40, 35B41, 37B55.
Key Words: Non-autonomous parabolic problems; variable exponents; p-Laplacian; pullback attractors; upper semicontinuity.
DOI: https://doi.org/10.58997/ejde.2023.50

Show me the PDF file (376 KB), TEX file for this article.

Jacson Simsen
Instituto de Matemática e Computação
Universidade Federal de Itajubá
37500-903 Itajubá, Minas Gerais, Brazil
email: jacson@unifei.edu.br

Return to the EJDE web page