Electron. J. Differential Equations, Vol. 2023 (2023), No. 72, pp. 1-21.

Qualitative properties of solutions to a reaction-diffusion equation with weighted strong reaction

Razvan Gabriel Iagar, Ana I. Muñoz, Ariel Sánchez

Abstract:
We study the existence and qualitative properties of solutions to the Cauchy problem associated to the quasilinear reaction-diffusion equation $$ \partial_tu=\Delta u^m+(1+|x|)^{\sigma}u^p, $$ posed for \((x,t)\in\mathbb{R}^N\times(0,\infty)\), where \(m>1\), \(p\in(0,1)\) and \(\sigma>0\). Initial data are taken to be bounded, non-negative and compactly supported. In the range when \(m+p\geq 2\), we prove existence of local solutions with a finite speed of propagation of their supports for compactly supported initial conditions. We also show in this case that, for a given compactly supported initial condition, there exist infinitely many solutions to the Cauchy problem, by prescribing the evolution of their interface. In the complementary range \(m+p< 2\), we obtain new Aronson-Benilan estimates satisfied by solutions to the Cauchy problem, which are of independent interest as a priori bounds for the solutions. We apply these estimates to establish infinite speed of propagation of the supports of solutions if \(m+p< 2\), that is, \(u(x,t)>0\) for any \(x\in\mathbb{R}^N\), \(t>0\), even in the case when the initial condition \(u_0\) is compactly supported.

Submitted June 13, 2023. Published October 23, 2023.
Math Subject Classifications: 35B44, 35B45, 35K57, 35K59.
Key Words: Reaction-diffusion equations; weighted reaction; strong reaction; Aronson-Benilan estimates.
DOI: 10.58997/ejde.2023.72

Show me the PDF file (402 KB), TEX file for this article.

Razvan Gabriel Iagar
Departamento de Matemática Aplicada
Ciencia e Ingenieria de Materiales y Tecnologia Electrónica
Universidad Rey Juan Carlos
Móstoles, 28933, Madrid, Spain
email: razvan.iagar@urjc.es
Ana I. Muñoz
Departamento de Matemática Aplicada
Ciencia e Ingenieria de Materiales y Tecnologia Electrónica
Universidad Rey Juan Carlos
Móstoles, 28933, Madrid, Spain
email: anaisabel.munoz@urjc.es
Ariel Sánchez
Departamento de Matemática Aplicada
Ciencia e Ingenieria de Materiales y Tecnologia Electrónica
Universidad Rey Juan Carlos
Móstoles, 28933, Madrid, Spain
email: ariel.sanchez@urjc.es

Return to the EJDE web page