Electron. J. Differential Equations, Vol. 2024 (2024), No. 44, pp. 1-12.

Caffarelli-Kohn-Nirenberg type problems with Berestycki-Lions type nonlinearities

Giovany M. Figueiredo, George Kiametis

Abstract:
In this article we use a Palais-Smale sequence satisfying a property related to Pohozaev identity to show the existence of solution for the elliptic Caffarelli-Kohn-Nirenberg type problems $$ -\text{div}(|x|^{-ap}|\nabla u|^{p-2}\nabla u) + |x|^{-bp^{*}}|u|^{p-2}u= |x|^{-bp^{*}}h(u) \quad \text{in }\mathbb{R}^N $$ and $$ -\text{div}(|x|^{-ap}|\nabla u|^{p-2}\nabla u) = |x|^{-bp^{*}} f(u) \quad \text{in }\mathbb{R}^N, $$ where \(1< p< N\), \(0\leq a< \frac{N-p}{p^{*}}\), \(a< b\leq a+1\), \( p^{*}=p^{*}(a,b)=\frac{pN}{N-dp}\) and \(d=1+a-b\). and \(h\) and \(f\) are continuous functions that satisfy hypotheses considered by Berestycki and Lions in [7].

Submitted January 15, 2024. Published August 12, 2024.
Math Subject Classifications: 35B38, 35J35, 35J92.
Key Words: Caffarelli-Kohn-Nirenberg type problems; Nehari manifold.
DOI: 10.58997/ejde.2024.44

Show me the PDF file (373 KB), TEX file for this article.

Giovany M. Figueiredo
Departamento de Matemática
Universidade de Brasília - UnB
70910-900, Brasília - DF, Brazil
email: giovany@unb.br
George D. F. L. Kiametis
Departamento de Matemática
Universidade de Brasília - UnB
70910-900, Brasí\lia - DF, Brazil
email: georgekiametis@gmail.com

Return to the EJDE web page