Ricardo Castillo, Omar Guzman-Rea, Miguel Loayza, Maria Zegarra
Abstract:
In this article we obtained the so-called Fujita exponent for the
degenerate parabolic coupled system
$$\displaylines{
u_t- \hbox{div} ( \omega(x)\nabla u )= t^r v^p \cr
v_t- \hbox{div} ( \omega(x)\nabla v )= t^s u^p
}$$
in \(R^N \times (0,T)\) with initial data belonging to
\( [ L^\infty(R^N)]^2\), where \(p,q > 0\) with \( pq > 1\); \(r,s>-1 \),
and either \(\omega(x) = | x_1|^a\) or \(\omega(x) = | x |^b\) with
\(a,b > 0\).
Submitted April 11, 2024. Published October 31, 2024.
Math Subject Classifications: 35K05, 35A01, 35K58, 35K65, 35B33.
Key Words: Global solution for coupled parabolic systems with degenerate coefficients and time-weighted sources.
DOI: 10.58997/ejde.2024.67
Show me the PDF file (438 KB), TEX file for this article.
Ricardo Castillo Departamento de Matemática Facultad de Ciencias Universidad del Bío-Bío Avenida Collao 1202, Casilla 5-C Concepción, Bío-Bío, Chile email: rcastillo@ubiobio.cl | |
Omar Guzmán-Rea Universidad Tecnológica de Perú, Ica, Peru email: c29064@utp.edu.pe | |
Miguel Loayza Departamento de Matemática Universidade Federal de Pernambuco Av. Jornalista AnĂbal Fernandes Cidade Universitáa Recife, Pernambuco, Brasil email: miguel.loayza@ufpe.br | |
María Zegarra Departamento de Matemática Universidad Nacional Mayor de San Marcos Av. Venezuela cuadra 34 Lima 1, Lima, Perú email: mzegarrag@unmsm.edu.pe |
Return to the EJDE web page