Electron. J. Differential Equations, Vol. 2025 (2025), No. 01, pp. 1-17.

Existence and boundedness of solutions for a parabolic-parabolic predator-prey model

Fengxiang Zhao, Haotian Tang, Jiashan Zheng, Kaiqiang Li

Abstract:
This article concerns the fully parabolic pursuit-prey chemotaxis system $$\displaylines{ u_t=\Delta u-\chi\nabla\cdot\left(u\nabla w\right) +u\left(\lambda_1-\mu_1 u^{r_1-1}+av\right), \quad x\in\Omega,\; t>0,\cr v_t=\Delta v+\xi\nabla\cdot\left(v\nabla z\right)+v\left(\lambda_2-\mu_2 v^{r_2-1}-bu\right),\quad x\in\Omega,\; t>0,\cr w_t=\Delta w-w+v,\quad x\in\Omega,\; t>0,\cr z_t=\Delta z-z+u, \quad x\in\Omega,\; t>0, }$$ in a bounded domain \(\Omega\subset\mathbb{R}^{N}\) \((N\geq1)\) with homogeneous Neumann boundary conditions, where \(\chi\), \(\xi\), \(\lambda_i\), \(\mu_i\), \(a\), \(b\) are positive constants and \(r_i>1\) \((i=1,2)\). We show that if \((r_1-1)(r_2-1)\geq1\), the above system exists a unique global and bounded classical solution for all appropriately regular nonnegative initial data, which extends the previous global existence result in Qi and Ke [13].

Submitted April 11, 2024. Published January 4, 2025.
Math Subject Classifications: 35K20, 35K55, 92C17.
Key Words: Pursuit-evasion; parabolic-parabolic; boundedness; classical solution.
DOI: 10.58997/ejde.2025.01

Show me the PDF file (416 KB), TEX file for this article.

Fengxiang Zhao
School of Mathematical and Informational Sciences
Yantai University
Yantai, 264005, Shandong, China
email: zfx2037@163.com
Haotian Tang
Department of Mathematics
Faculty of Science and Technology
University of Macau
Taipa, Macau, China
email: haotiantang2022@163.com
Jiashan Zheng
School of Mathematical and Informational Sciences
Yantai University
Yantai, 264005, Shandong, China
email: zhengjiashan2008@163.com
Kaiqiang Li
School of Mathematical and Informational Sciences
Yantai University
Yantai, 264005, Shandong, China
email: kaiqiangli19@163.com

Return to the EJDE web page