Fengxiang Zhao, Haotian Tang, Jiashan Zheng, Kaiqiang Li
Abstract:
This article concerns the fully parabolic pursuit-prey chemotaxis system
$$\displaylines{
u_t=\Delta u-\chi\nabla\cdot\left(u\nabla w\right)
+u\left(\lambda_1-\mu_1 u^{r_1-1}+av\right), \quad x\in\Omega,\; t>0,\cr
v_t=\Delta v+\xi\nabla\cdot\left(v\nabla z\right)+v\left(\lambda_2-\mu_2
v^{r_2-1}-bu\right),\quad x\in\Omega,\; t>0,\cr
w_t=\Delta w-w+v,\quad x\in\Omega,\; t>0,\cr
z_t=\Delta z-z+u, \quad x\in\Omega,\; t>0,
}$$
in a bounded domain \(\Omega\subset\mathbb{R}^{N}\) \((N\geq1)\) with
homogeneous Neumann boundary conditions, where \(\chi\), \(\xi\),
\(\lambda_i\), \(\mu_i\), \(a\), \(b\) are positive constants and
\(r_i>1\) \((i=1,2)\). We show that if \((r_1-1)(r_2-1)\geq1\),
the above system exists a unique global and bounded classical solution
for all appropriately regular nonnegative initial data, which extends
the previous global existence result in Qi and Ke [13].
Submitted April 11, 2024. Published January 4, 2025.
Math Subject Classifications: 35K20, 35K55, 92C17.
Key Words: Pursuit-evasion; parabolic-parabolic; boundedness; classical solution.
DOI: 10.58997/ejde.2025.01
Show me the PDF file (416 KB), TEX file for this article.
![]() |
Fengxiang Zhao School of Mathematical and Informational Sciences Yantai University Yantai, 264005, Shandong, China email: zfx2037@163.com |
---|---|
![]() |
Haotian Tang Department of Mathematics Faculty of Science and Technology University of Macau Taipa, Macau, China email: haotiantang2022@163.com |
![]() |
Jiashan Zheng School of Mathematical and Informational Sciences Yantai University Yantai, 264005, Shandong, China email: zhengjiashan2008@163.com |
![]() |
Kaiqiang Li School of Mathematical and Informational Sciences Yantai University Yantai, 264005, Shandong, China email: kaiqiangli19@163.com |
Return to the EJDE web page