Electron. J. Differential Equations, Vol. 2025 (2025), No. 09, pp. 1-17.

Global boundedness in an indirect chemotaxis-consumption model with signal-dependent degenerate diffusion

Chun Wu

Abstract:
In this article, we consider the consumption chemotaxis system $$\displaylines{ u_t=\Delta(uv^\alpha)+au-bu^\gamma, \quad (x,t)\in\Omega\times(0,\infty), \cr v_t=\Delta{v}-uvw, \quad (x,t)\in\Omega\times(0,\infty),\cr w_t=-\delta w+u, \quad (x,t)\in\Omega\times(0,\infty), }$$ on a smooth bounded domain \(\Omega\subset \mathbb{R}^n\), \(n\geq 2\) with homogeneous Neumann boundary conditions, where \(a>0\), \(b>0\), \(\gamma\ge2\), and \(\delta>0\). We shown that for sufficiently regular initial data, the associated initial-boundary value problem possesses global bounded classical solutions.

Submitted November 6, 2024. Published January 22, 2025.
Math Subject Classifications: 35K35, 35B40, 35A01, 92C17.
Key Words: Global boundedness; indirect chemotaxis-consumption; signal-dependent motility.
DOI: 10.58997/ejde.2025.09

Show me the PDF file (378 KB), TEX file for this article.

Chun Wu
School of Mathematics Science
Chongqing Normal University
Chongqing 401331, China
email: wuchun@cqnu.edu.cn

Return to the EJDE web page