Electron. J. Differential Equations, Vol. 2025 (2025), No. 110, pp. 1-11.

Solutions to magnetic Schrodinger equations with arbitrary growth at infinity

Wendy F. Almeida, Giovany M. Figueiredo

Abstract:
This work addresses the existence of at least one radial solution to the nonlinear magnetic Schrodinger equation $$ \Big(\frac{\epsilon}{i} \nabla - A(x) \Big)^2 u + V(x) u = f(|u|^2) u \quad \text{in } \mathbb{R}^N, $$ where both the magnetic potential \(A\) and the electric potential \(V\) are continuous, radial functions. Our main tool is the penalization method developed by del Pino and Felmer [17], which we adapt to the complex-valued setting under magnetic effects. By using the small parameter \(\epsilon\) and radial symmetry, we handle nonlinearities with arbitrary growth.

Submitted September 27, 2025. Published November 24, 2025.
Math Subject Classifications: 35B33, 35J20, 35Q55.
Key Words: Magnetic Schrodinger equations;  arbitrary growth at infinity.
DOI: 10.58997/ejde.2025.110

Show me the PDF file (429 KB), TEX file for this article.

Wendy F. Almeida Universidade de Brasília
Departamento de Matemática
Campus Darcy Ribeiro, 01
CEP 70910-900, Brasília, DF, Brazil
email: wendy_fda@hotmail.com
Giovany M. Figueiredo
Universidade de Brasília
Departamento de Matemática
Campus Darcy Ribeiro, 01
CEP 70910-900, Brasília, DF, Brazil
email: giovany@unb.br

Return to the EJDE web page