Electron. J. Differential Equations, Vol. 2025 (2025), No. 115, pp. 1-18.

Dynamics of a May-Leonard asymmetric system of ordinary differential equations

Fabio Scalco Dias, Regilene Oliveira, Claudia Valls

Abstract:
We study the May-Leonard asymmetric model in \(R^3\) which was introduced in [3,8]. It is the celebrated classical May-Leonard model incorporating asymmetric competitive effects instead of requiring equal intrinsic growth rates for each competing population. We study this system when it has an invariant of Darboux type and for these values of the parameters we shall describe its global dynamics in the compactification of the sphere, adding its infinity. In particular, we study the dynamics of that system on the invariant planes and we complete the study describing the dynamics at infinity. We also prove that the system is completely integrable and describe the \(\alpha\) and \(\omega\) limits of all the orbits of the system.

Submitted August 26, 2025. Published December 16, 2025.
Math Subject Classifications: 34A34, 34D23.
Key Words: Poincare compactification; phase portraits; dynamics at infinity; integrability.
DOI: 10.58997/ejde.2025.115

Show me the PDF file (744 KB), TEX file for this article.

Fabio Scalco Dias
Instituto de Matemática e Computação
Universidade Federal de Itajubá, Avenida BPS 1303
Pinheirinho, CEP 37.500-903, Itajubá, MG, Brazil
email: scalco@unifei.edu.br
Regilene Oliveira
Departamento de Matemática
ICMC-Universidade de São Paulo
Avenida Trabalhador São-carlense, 400 - 13566-590
São Carlos, SP, Brazil
email: regilene@icmc.usp.br
Cláudia Valls
Departamento de Matemática, Instituto SuperiorTécnico
Universidade Técnica de Lisboa
Av. Rovisco Pais 1049-001, Lisboa, Portugal
email: claudia.valls@tecnico.pt

Return to the EJDE web page