Electron. J. Differential Equations, Vol. 2025 (2025), No. 120, pp. 1-11.

Henon-type equations involving the biharmonic operator and a coordinate product weight

Marcelo F. Furtado, Thiago G. Melo

Abstract:
We consider the Henon-type equation $$ \Delta^2 u = [W(z)]^\ell f(u) \text{ in } B, \quad u= \frac{\partial u}{\partial \nu} = 0 \text{ on } \partial B, $$ where \(B\) is the unit ball in \(\mathbb{R}^{N} = \mathbb{R}^{N_1} \times \mathbb{R}^{N_2}\), the weight function \(W(z)\) behaves like \(|x||y|\) for \(x\in \mathbb{R}^{N_1}\), \(y \in \mathbb{R}^{N_2}\), and the nonlinearity \(f\) is allowed to exhibit supercritical growth.We establish a new radial-type lemma adapted to the weight \(|x|^{(N_1 - 2)/2}\,|y|^{(N_2 - 2)/2}\), which yields a weighted Sobolev embeddings for our functional framework into \(L^p\) spaces, with exponents \(p > 1\), possibly within the supercritical range. Finally, we prove the existence of a weak solution to the problem.

Submitted July 23, 2025. Published December 28, 2025.
Math Subject Classifications: 35J30, 35J35.
Key Words: Henon equation; variational methods; elliptic equations; supercritical problems; biharmonic operator.
DOI: 10.58997/ejde.2025.120

Show me the PDF file (403 KB), TEX file for this article.

Marcelo F. Furtado
Universidade de Brasília
Departamento de Matemática
70910-900 Brasília-DF
email mfurtado@unb.br
Thiago G. Melo
Universidade de Brasília
Departamento de Matemática
70910-900 Brasília-DF, Brazil
email: guimaraesmelothiago@gmail.com

Return to the EJDE web page