Electron. J. Differential Equations, Vol. 2025 (2025), No. 26, pp. 1-20.

Global well-posedness to a multidimensional parabolic-elliptic-elliptic attraction-repulsion chemotaxis system

Ling Liu

Abstract:
In this article we study the initial-boundary value problem for the attraction-repulsion chemotaxis system $$ \displaylines{ u_t=\Delta u-\chi\nabla\cdot(u\nabla v)+\xi\nabla\cdot(u\nabla w), \quad x\in\Omega,; t>0,\cr 0=\Delta v-\beta v+\alpha u, \quad x\in\Omega,\; t>0,\cr 0=\Delta w-\delta w+\gamma u, \quad x\in\Omega,\; t>0,\cr \frac{\partial u}{\partial \nu}=\frac{\partial v}{\partial \nu} =\frac{\partial w}{\partial \nu}=0, \quad x\in\partial\Omega,\; t>0,\cr u(x,0)=u_0(x), \quad x\in\Omega, }$$ with homogenous Neumann boundary conditions in a multidimensional bounded domain \(\Omega\subset\mathbb{R}^N\) \((1\leq N\leq 4)\) with smooth boundary, where \(\chi\), \(\xi\), \(\alpha\), \(\beta\), \(\delta\) and \(\gamma\) are positive constants. We prove that under the assumption \(\chi\alpha=\xi\gamma\) the corresponding system possesses a unique global bounded classical solution in the cases \(N\leq 3\) or \( \lambda_0 \gamma\delta\xi \| u_0\|^{10/7}_{L^1(\Omega)} < \frac{1}{C_{GN}}\) and \(N=4\). Moreover, the large time behavior of solutions is also investigated. Specially, when \(\chi\alpha=\xi\gamma\), the solution of the system converges to \((\bar{u}_0,\frac\alpha\beta\bar{u}_0,\frac\gamma\delta\bar{u}_0)\) exponentially if \(\|u_0\|_{L^\infty(\Omega)}\) is small.

Submitted January 5, 2025. Published March 11, 2025
Math Subject Classifications: 35K55, 35Q92, 35Q35, 92C17
Key Words: Attraction-repulsion; well-posedness; asymptotic behavior; global solution; boundedness
DOI: 10.58997/ejde.2025.26

Show me the PDF file (405 KB), TEX file for this article.

Ling Liu
Department of Basic Science
Jilin Jianzhu University
Changchun 130118, China
email: liuling2004@sohu.com

Return to the EJDE web page