Electron. J. Differential Equations, Vol. 2025 (2025), No. 29, pp. 1-10.

Asymptotic profile of least energy solutions to the nonlinear Schrodinger-Bopp-Podolsky system

Gustavo de Paula Ramos

Abstract:
We consider the nonlinear Schrodinger-Bopp-Podolsky system in \(\mathbb{R}^3\): $$\displaylines{ - \Delta v + v + \phi v = v |v|^{p - 2}, \cr \beta^2 \Delta^2 \phi - \Delta \phi = 4 \pi v^2, }$$ where \(\beta > 0\) and \(3 < p < 6\); the unknowns being \(v\) and \(\phi \colon \mathbb{R}^3 \to \mathbb{R}\). We prove that, as \(\beta \to 0\) and up to translations and subsequences, the least energy solutions of the above converge to a least energy solution to the nonlinear Schrodinger-Poisson system in \(\mathbb{R}^3\): $$\displaylines{ - \Delta v + v + \phi v = v |v|^{p - 2}, \cr - \Delta \phi = 4 \pi v^2. }$$

Submitted January 2, 2025. Published March 17, 2025.
Math Subject Classifications: 35J61, 35B40, 35Q55, 45K05.
Key Words: Schrodinger-Bopp-Podolsky system; Schrodinger-Poisson system; nonlocal semilinear elliptic problem; variational methods; ground state; Nehari-Pohozaev manifold; Concentration-compactness.
DOI: 10.58997/ejde.2025.29

Show me the PDF file (365 KB), TEX file for this article.

Gustavo de Paula Ramos
Instituto de Matemática e Estatística
Universidade de São Paulo
Rua do Matão, 1010
05508-090 São Paulo SP, Brazil
email: gpramos@icmc.usp.br

Return to the EJDE web page