Sigifredo Herron, Emer Lopera, Diana Sanchez
Abstract:
We prove the existence of three positive solutions for the problem
$$\displaylines{
-\Delta_p u + V (x)\varphi_p(u)=\lambda f(u),\quad x\in \Omega, \cr
u(x)=0, \quad x\in \partial\Omega,
} $$
where \(\lambda >0\), \(\Delta_p\) is the \(p\)-Laplacian operator,
\(N>p>1\), \(\varphi_p (s):=|s|^{p-2}s\),
\(s\in \mathbb{R}\), \(\Omega\) is a bounded domain in \(\mathbb{R}^N\) with
connected and smooth boundary. In our study, \( V \in L^\infty (\Omega)\)
and \(f:[0,\infty)\to \mathbb{R}\) is a \(C^1\) function.
The reaction term, \(f\), is increasing and \(p\)-sublinear at infinity.
Our method relies on sub-super solution techniques and the use of a
theorem on the existence of multiple fixed points. We extend some results
known in the literature.
Submitted March 2, 2025. Published May 8, 2025.
Math Subject Classifications: 35B09, 35B50, 35B51, 35D30, 35G30, 35J10, 35J92, 47H10.
Key Words: Subsolution; supersolution; multiple solutions; p-Laplacian; Schrodinger type operator
DOI: 10.58997/ejde.2025.47
Show me the PDF file (581 KB), TEX file for this article.
![]() |
Sigifredo Herrón Universidad Nacional de Colombia Medellín, Colombia email: sherron@unal.edu.co |
---|---|
![]() |
Emer Lopera Universidad Nacional de Colombia Manizales, Colombia email: edloperar@unal.edu.co |
![]() |
Diana Sánchez Universidad Nacional de Colombia Manizales, Colombia email: dmsanchezm@unal.edu.co |
Return to the EJDE web page