Electron. J. Differential Equations, Vol. 2025 (2025), No. 53, pp. 1-15.

Solutions with expanding compact support of saturated Schrodinger equations: self-similar solutions

Pascal Begout, Jesus Ildefonso Diaz

Abstract:
We prove the existence of solutions \(u(t,x)\) of the Schr\"odinger equation with a saturation nonlinear term \((u/|u|)\) having compact support, for each \(t>0\), that expands with a growth law of the type \(C\sqrt{t}\). The primary tool is considering the self-similar solution of the associated equation.

Submitted April 14, 2025. Published May 24, 2025.
Math Subject Classifications: 35C06, 35A01, 35A02, 35J91, 35Q55.
Key Words: Schrodinger equation with saturated nonlinearity; solutions compactly supported; energy method; Dirichlet boundary condition; Neumann boundary condition; existence; uniqueness.
DOI: 10.58997/ejde.2025.53

Show me the PDF file (423 KB), TEX file for this article.

Pascal Bégout
Toulouse School of Economics,
Université Toulouse Capitole
Institut de Mathématiques de Toulouse
1, Esplanade de l'Université
31080 Toulouse Cedex 6, France
email: Pascal.Begout@math.cnrs.fr, ORCID: 0000-0002-9172-3057
Jesús Ildefonso Díaz
Instituto de Matemática Interdisciplinar
Universidad Complutense de Madrid
Plaza de las Ciencias, 3
28040 Madrid, Spain
email: jidiaz@ucm.es, ORCID: 0000-0003-1730-9509

Return to the EJDE web page