Aldryn Aparcana, Brandon Carhuas-Torre, Ricardo Castillo, Miguel Loayza
Abstract:
We establish the existence, non-existence and uniqueness of the local solutions of
the Hardy parabolic equation \(u_t - \Delta u = h(t)|\cdot |^{-\gamma}g(u)\) on
\(\Omega \times (0,T) \) with Dirichlet boundary conditions.
We assume that \(\Omega\) with \(0\in \Omega\) is a smooth domain bounded or unbounded,
\(h \in C(0,\infty)\), \(g \in C([0,\infty))\) is a non-decreasing function,
\(0<\gamma<\min\{2,N\}\), and the initial data have a singularity at the origin.
Submitted January 21, 2025. Published July 4, 2025.
Math Subject Classifications: 35A01, 35A02, 35B33, 35D30, 35K58.
Key Words: Local existence; Hardy parabolic equation; Lebesgue spaces; critical values; uniqueness.
DOI: 10.58997/ejde.2025.67
Show me the PDF file (385 KB), TEX file for this article.
![]() |
Aldryn Aparcana Facultad de Ciencias Universidad Nacional San Luis Gonzaga Ica, Perú email: aldryn.aparcana@unica.edu.pe |
---|---|
![]() |
Brandon Carhuas-Torre Departamento de Matemática Universidade Federal de Pernambuco Av. Jornalista Anibal Fernandes Cidade Universitáa Recife, Pernambuco, Brasil email: brandon.carhuas@ufpe.br |
![]() |
Ricardo Castillo Facultad de Ciencias, Departamento de Matemática Universidad del Bío-Bío Avenida Collao 1202, Casilla 5-C Concepci\'on, Bío-Bío, Chile email: rcastillo@ubiobio.cl |
![]() |
Miguel Loayza Departamento de Matemática Universidade Federal de Pernambuco Av. Jornalista Anibal Fernandes Cidade Universitáa Recife, Pernambuco, Brasil email: miguel.loayza@ufpe.br |
Return to the EJDE web page