Electron. J. Differential Equations, Vol. 2025 (2025), No. 81, pp. 1-10.

Finite-time blow-up in a quasilinear fully parabolic attraction-repulsion chemotaxis system with density-dependent sensitivity

Yutaro Chiyo, Takeshi Uemura, Tomomi Yokota

Abstract:
This article concerns the quasilinear fully parabolic attraction-repulsion chemotaxis system $$\displaylines{ u_t=\nabla \cdot ((u+1)^{m-1}\nabla u -\chi u(u+1)^{p-2} \nabla v + \xi u(u+1)^{p-2}\nabla w),\quad x \in \Omega,\; t>0,\cr v_t=\Delta v+\alpha u-\beta v, \quad x \in \Omega,\; t>0,\cr w_t=\Delta w+\gamma u-\delta w, \quad x \in \Omega,\; t>0 }$$ with homogeneous Neumann boundary conditions, where \(\Omega \subset \mathbb{R}^n\) \((n \in \{2,3\})\) is an open ball, \(m, p \in \mathbb{R}\), \(\chi, \xi, \alpha, \beta, \gamma, \delta >0\) are constants. The main result asserts finite-time blow-up of solutions to this system with some positive initial data when \(\chi\alpha-\xi\gamma>0\), \(p \ge 2\) and \(p-m >2/n\).

Submitted May 1, 2025. Published August 6, 2025.
Math Subject Classifications: 35B44, 35K59, 35Q92, 92C17.
Key Words: Finite-time blow-up; quasilinear; attraction-repulsion; chemotaxis.
DOI: 10.58997/ejde.2025.81

Show me the PDF file (387 KB), TEX file for this article.

Yutaro Chiyo
Department of Mathematics
Tokyo University of Science
1-3, Kagurazaka, Shinjuku-ku
Tokyo 162-8601, Japan
email: ycnewssz@gmail.com
Takeshi Uemura
Department of Mathematics
Tokyo University of Science
1-3, Kagurazaka, Shinjuku-ku
Tokyo 162-8601, Japan
email: uemura.tus@gmail.com}
Tomomi Yokota
Department of Mathematics
Tokyo University of Science
1-3, Kagurazaka, Shinjuku-ku
Tokyo 162-8601, Japan
email: yokota@rs.tus.ac.jp

Return to the EJDE web page