Electron. J. Differential Equations, Vol. 2025 (2025), No. 94, pp. 1-11.

Thermoelastic plates with type I heat conduction with second gradient

Jaime Munoz Rivera, Elena Ochoa Ochoa, Ramon Quintanilla

Abstract:
This article studies the qualitative properties of thermoelastic plates modeled by the second-gradient theory with a Type I heat equation. We establish the exponential stability of the solutions. Our main contribution is to prove that the semigroup is non-differentiable when the bi-Laplacian operator appears in the heat equation. Additionally, we analyze the case where the elastic parameter is negative, demonstrating the uniqueness and instability of the solutions. Finally, in the one-dimensional quasi-static case, we demonstrate the existence and exponential decay of the solutions under specific conditions.

Submitted September 28, 2025. Published October 9, 2025.
Math Subject Classifications: 74K20, 74F05, 74H20, 74H40.
Key Words: Euler Bernoulli equation; semigroup theory; smoothing effect.
DOI: 10.58997/ejde.2025.94

Show me the PDF file (355 KB), TEX file for this article.

Jaime Muñoz Rivera
Universidad del Bío-Bío
Departamento de Matemática
Facultad de Ciencias
Avenida Collao 1202, Concepción, Chile
email: jemunozrivera@gmail.com
Elena Ochoa Ochoa
Universidad Andres Bello
Departamento de Matemáticas
Facultad de Ciencias Exactas
Sede Concepción
Autopista Concepción-Talcahuano 7100
Talcahuano, Chile
email: elenaochoaochoa18@gmail.com
Ramón Quintanilla
Universidad Politécnica de Catalunya
Departamento de Matemáticas
Colom 11, 08222 Terrassa, Spain
email: ramon.quintanilla@upc.edu

Return to the EJDE web page