Electron. J. Differential Equations, Vol. 2025 (2025), No. 95, pp. 1-15.

Uniform estimates for elliptic equations with Caratheodory nonlinearities at the interior and on the boundary

Edgar Antonio, Martin P. Arciga-Alejandre, Rosa Pardo, Jorge Sanchez-Ortiz

Abstract:
We establish an explicit uniform a priori estimate for weak solutions to slightly subcritical elliptic problems with nonlinearities simultaneously at the interior and on the boundary. Our explicit \(L^{\infty}(\Omega )\) a priori estimates are in terms of powers of their \(H^1(\Omega )\) norms. To prove our result, we combine a De Giorgi-Nash-Moser iteration scheme together with elliptic regularity and the Gagliardo-Nirenberg interpolation inequality.

Submitted January 24, 2025. Published October 13, 2025.
Math Subject Classifications: 35B45, 35J66, 35B33, 35J75, 35J25
Key Words: A priori estimates; slightly subcritical non-linearities; L-infinity a priori bounds; nonlinear boundary conditions.
DOI: 10.58997/ejde.2025.95

Show me the PDF file (393 KB), TEX file for this article.

Edgar Antonio
Universidad Autónoma de Guerrero
Guerrero, México
email: eaam020713@gmail.com
Martín P. Árciga-Alejandre
Universidad Autónoma de Guerrero
Guerrero, México
email: mparciga@uagro.mx
Rosa Pardo
Universidad Complutense de Madrid
Madrid, Spain
email: rpardo@ucm.es
Jorge Sánchez-Ortiz
Universidad Autónoma de Guerrero
Guerrero, México
email: jsanchez@uagro.mx

Return to the EJDE web page