Electron. J. Differential Equations, Vol. 2026 (2026), No. 03, pp. 1-27.

Normalized solutions for a fractional Kirchhoff-Schrodinger-Poisson systems with critical growth

Yu-Qin Zhao, Jia-Feng Liao

Abstract:
In this article, we study the fractional Kirchhoff-Schrodinger-Poisson system with Sobolev critical growth $$\displaylines{ \Big(a+b\int_{\mathbb{R}^3}|(-\Delta)^{s/2}u|^2dx\Big) (-\Delta)^s u+ \phi u=\lambda u+ \mu|u|^{p-2}u+|u|^{2^*_s-2}u, \quad \text{in }\mathbb{R}^3, \cr (-\Delta)^s \phi=u^2, \quad \text{in }\mathbb{R}^3, }$$ where \(a,b>0\), \(s\in(\frac{3}{4},1)\), \(p \in(2,2^*_s)\), and \(\mu >0\) is a parameter, \(\lambda \in \mathbb{R}\) is an undermined parameter. For this problem, under the \(L^2\)-subcritical, \(p\in(2, \frac{4s}{3}+2)\), we obtain the multiplicity of the normalized solutions by means of the truncation technique, concentration-compactness principle, and genus theory. In the \(L^2\)-supercritical, \(p\in( \frac{8s}{3}+2, 2^*_s)\), we prove a couple of normalized solutions by developing a fiber map and using the concentration-compactness principle.

Submitted September 18, 2025. Published January 10, 2026.
Math Subject Classifications: 35B33, 35R11, 35J50.
Key Words: Kirchhoff-Schrodinger-Poisson system; normalized solution; variational methods; L^2-subcritical; L^2-supercritical.
DOI: 10.58997/ejde.2026.03

Show me the PDF file (490 KB), TEX file for this article.

Yu-Qin Zhao
School of Mathematics Sciences
China West Normal University
Nanchong Sichuan 637009, China
email: 2943658736@qq.com
Jia-Feng Liao
School of Mathematics Sciences
China West Normal University
Nanchong, Sichuan 637009, China
email: liaojiafeng@163.com

Return to the EJDE web page