Electron. J. Differential Equations, Vol. 2026 (2026), No. 06, pp. 1-20.

Multiple positive normalized solutions for Kirchhoff type system with van der Waals type potentials

Zhewen Chen, Muzi Li

Abstract:
This article shows the existence of normalized solutions for Kirchhoff type system with van der Waals type potentials, $$\displaylines{ -(a+b\int_{\mathbb{R}^N}|\nabla u_1|^2dx)\Delta u_1=\lambda_1 u_1+\mu_1(I_\alpha\ast|u_1|^{p_1})|u_1|^{p_1-2}u_1+ \Theta r_1(I_\beta\ast|u_2|^{r_2})|u_1|^{r_1-2}u_1, \cr -(a+b\int_{\mathbb{R}^N}|\nabla u_2|^2dx)\Delta u_2=\lambda_2 u_2+\mu_2(I_\alpha\ast|u_2|^{p_2})|u_2|^{p_2-2}u_2+ \Theta r_2(I_\beta\ast|u_1|^{r_1})|u_2|^{r_2-2}u_2, \cr \int_{\mathbb{R}^N}|u_1|^2dx=d_1>0,\quad \int_{\mathbb{R}^N}|u_2|^2dx=d_2>0, }$$ where \(N=3,4\), \(\mu_1,\mu_2,\Theta >0\), \(\frac{N+\alpha}{N}< p_1,p_2< \frac{N+\alpha+2}{N}\), \(2\cdot\frac{N+\beta}{N}< r_1+r_2< 2\cdot2_\beta^*=2\cdot\frac{N+\beta}{N-2}\), \(0< \alpha,\beta< N\), \(I_\alpha\) and \(I_\beta\) are the Riesz potentials. We show that the system has a positive least energy solution at negative energy level for \(\Theta\) small. In addition, we also prove that the system admits a high energy positive solution at positive energy level in the special case.

Submitted July 2, 2025. Published January 19, 2026.
Math Subject Classifications: 35J20, 35J47, 35J50.
Key Words: Ground state; normalized solution; Van der Waals type potential; Kirchhoff system.
DOI: 10.58997/ejde.2026.06

Show me the PDF file (460 KB), TEX file for this article.

Zhewen Chen
College of Science
Jimei University
Xiamen 361021, China
email: zhewenchen@jmu.edu.cn
Muzi Li
College of Mathematics and Statistics
Fujian Normal University
Qishan Campus, Fuzhou 350117, China
email: mutoudededemuzi@163.com

Return to the EJDE web page